scholarly journals Bax inhibition protects against free fatty acid-induced lysosomal permeabilization

2006 ◽  
Vol 290 (6) ◽  
pp. G1339-G1346 ◽  
Author(s):  
Ariel E. Feldstein ◽  
Nathan W. Werneburg ◽  
ZhengZheng Li ◽  
Steven F. Bronk ◽  
Gregory J. Gores

Lysosomal permeabilization is a key feature of hepatocyte lipotoxicity, yet the mechanisms mediating this critical cellular event are unclear. This study examined the mechanisms involved in free fatty acid (FFA)-induced lysosomal permeabilization and the role of Bax, a Bcl-2 family member, in this event. Exposure of liver cells to palmitate induced Bax activation and translocation to lysosomes. Studies to suppress Bax activation either by pharmacological approaches or small interfering-RNA-mediated inhibition of Bax expression showed that lysosomal permeabilization is Bax dependent. In addition, palmitate treatment resulted in a significant decrease in Bcl-XL, a Bax antagonist. Moreover, forced Bcl-XL expression blocked lysosomal permeabilization. Lysosomal permeabilization by FFA was ceramide and caspase independent. Finally, paradigms that inhibit lysosomal permeabilization also reduced apoptosis. In conclusion, these data strongly support a regulatory role for Bax in FFA-mediated lysosomal permeabilization and subsequent cell death.

Neuroscience ◽  
2013 ◽  
Vol 244 ◽  
pp. 16-30 ◽  
Author(s):  
W.-L. Li ◽  
S.P. Yu ◽  
D. Chen ◽  
S.S. Yu ◽  
Y.-J. Jiang ◽  
...  

2006 ◽  
Vol 263 (6) ◽  
pp. E1063-E1069 ◽  
Author(s):  
P. J. Campbell ◽  
M. G. Carlson ◽  
J. O. Hill ◽  
N. Nurjhan

The regulation of lipolysis, free fatty acid appearance into plasma (FFA R(a)), an FFA reesterification and oxidation were examined in seven healthy humans infused intravenously with insulin at rates of 4, 8, 25, and 400 mU.m-2.min-1. Glycerol and FFA R(a) were determined by isotope dilution methods, and FFA oxidation was calculated by indirect calorimetry or by measurement of expired 14CO2 from infused [1-14C]palmitate. These measurements were used to calculate total FFA reesterification, primary FFA reesterification occurring within the adipocyte, and secondary reesterification of circulating FFA molecules. Lipolysis, FFA R(a), and secondary FFA reesterification were exquisitely insulin sensitive [the insulin concentrations that produced half-maximal suppression (EC50), 106 +/- 26, 91 +/- 20 vs. 80 +/- 16 pM, P = not significant] in contrast to insulin suppression of FFA oxidation (EC50, 324 +/- 60, all P < 0.01). The absolute rate of primary FFA reesterification was not affected by the increase in insulin concentration, but the proportion of FFA molecules undergoing primary reesterification doubled over the physiological portion of the insulin dose-response curve (from 0.23 +/- 0.06 to 0.44 +/- 0.07, P < 0.05). This served to magnify insulin suppression of FFA R(a) twofold. In conclusion, insulin regulates FFA R(a) by inhibition of lipolysis while maintaining a constant rate of primary FFA reesterification.


2019 ◽  
Author(s):  
Mohammad Aziz ◽  
Saeed Al Mahri ◽  
Amal Alghamdi ◽  
Maaged AlAkiel ◽  
Monira Al Aujan ◽  
...  

Abstract Background Colorectal cancer is a worldwide problem which has been associated with changes in diet and lifestyle pattern. As a result of colonic fermentation of dietary fibres, short chain free fatty acids are generated which activate Free Fatty Acid Receptors 2 and 3 (FFAR2 and FFAR3). FFAR2 and FFAR3 genes are abundantly expressed in colonic epithelium and play an important role in the metabolic homeostasis of colonic epithelial cells. Earlier studies point to the involvement of FFAR2 in colorectal carcinogenesis. Methods Transcriptome analysis console was used to analyse microarray data from patients and cell lines. We employed shRNA mediated down regulation of FFAR2 and FFAR3 genes which was assessed using qRT-PCR. Assays for glucose uptake and cAMP generation was done along with immunofluorescence studies. For measuring cell proliferation, we employed real time electrical impedance based assay available from xCelligence. Results Microarray data analysis of colorectal cancer patient samples showed a significant down regulation of FFAR2 gene expression. This prompted us to study the FFAR2 in colorectal cancer. Since, FFAR3 shares significant structural and functional homology with FFAR2, we knocked down both these receptors in colorectal cancer cell line HCT 116. These modified cell lines exhibited higher proliferation rate and were found to have increased glucose uptake as well as increased level of GLUT1. Since, FFAR2 and FFAR3 signal through G protein subunit (Gαi), knockdown of these receptors was associated with increased cAMP. Inhibition of PKA did not alter the growth and proliferation of these cells indicating a mechanism independent of cAMP/PKA pathway. Conclusion: Our results suggest role of FFAR2/FFAR3 genes in increased proliferation of colon cancer cells via enhanced glucose uptake and exclude the role of protein kinase A mediated cAMP signalling. Alternate pathways could be involved that would ultimately result in increased cell proliferation as a result of down regulated FFAR2/FFAR3 genes. This study paves the way to understand the mechanism of action of short chain free fatty acid receptors in colorectal cancer.


Endocrinology ◽  
2016 ◽  
Vol 157 (7) ◽  
pp. 2621-2635 ◽  
Author(s):  
Seong Hee Ahn ◽  
Sook-Young Park ◽  
Ji-Eun Baek ◽  
Su-Youn Lee ◽  
Wook-Young Baek ◽  
...  

Free fatty acid receptor 4 (FFA4) has been reported to be a receptor for n-3 fatty acids (FAs). Although n-3 FAs are beneficial for bone health, a role of FFA4 in bone metabolism has been rarely investigated. We noted that FFA4 was more abundantly expressed in both mature osteoclasts and osteoblasts than their respective precursors and that it was activated by docosahexaenoic acid. FFA4 knockout (Ffar4−/−) and wild-type mice exhibited similar bone masses when fed a normal diet. Because fat-1 transgenic (fat-1Tg+) mice endogenously converting n-6 to n-3 FAs contain high n-3 FA levels, we crossed Ffar4−/− and fat-1Tg+ mice over two generations to generate four genotypes of mice littermates: Ffar4+/+;fat-1Tg−, Ffar4+/+;fat-1Tg+, Ffar4−/−;fat-1Tg−, and Ffar4−/−;fat-1Tg+. Female and male littermates were included in ovariectomy- and high-fat diet-induced bone loss models, respectively. Female fat-1Tg+ mice decreased bone loss after ovariectomy both by promoting osteoblastic bone formation and inhibiting osteoclastic bone resorption than their wild-type littermates, only when they had the Ffar4+/+ background, but not the Ffar4−/− background. In a high-fat diet-fed model, male fat-1Tg+ mice had higher bone mass resulting from stimulated bone formation and reduced bone resorption than their wild-type littermates, only when they had the Ffar4+/+ background, but not the Ffar4−/− background. In vitro studies supported the role of FFA4 as n-3 FA receptor in bone metabolism. In conclusion, FFA4 is a dual-acting factor that increases osteoblastic bone formation and decreases osteoclastic bone resorption, suggesting that it may be an ideal target for modulating metabolic bone diseases.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2637
Author(s):  
Joon Min Jung ◽  
Tai Kyung Noh ◽  
Soo Youn Jo ◽  
Su Yeon Kim ◽  
Youngsup Song ◽  
...  

Epidermal keratinocytes are considered as the most important neighboring cells that modify melanogenesis. Our previous study used microarray to show that guanine deaminase (GDA) gene expression is highly increased in melasma lesions. Hence, we investigated the role of GDA in skin pigmentation. We examined GDA expression in post-inflammatory hyperpigmentation (PIH) lesions, diagnosed as Riehl’s melanosis. We further investigated the possible role of keratinocyte-derived GDA in melanogenesis by quantitative PCR, immunofluorescence staining, small interfering RNA-based GDA knockdown, and adenovirus-mediated GDA overexpression. We found higher GDA positivity in the hyperpigmentary lesional epidermis than in the perilesional epidermis. Both UVB irradiation and stem cell factor (SCF) plus endothelin-1 (ET-1) were used, which are well-known melanogenic stimuli upregulating GDA expression in both keratinocyte culture alone and keratinocyte and melanocyte coculture. GDA knockdown downregulated melanin content, while GDA overexpression promoted melanogenesis in the coculture. When melanocytes were treated with UVB-exposed keratinocyte-conditioned media, the melanin content was increased. Also, GDA knockdown lowered SCF and ET-1 expression levels in keratinocytes. GDA in epidermal keratinocytes may promote melanogenesis by upregulating SCF and ET-1, suggesting its role in skin hyperpigmentary disorders.


Sign in / Sign up

Export Citation Format

Share Document