scholarly journals c-Kit suppresses atherosclerosis in hyperlipidemic mice

2019 ◽  
Vol 317 (4) ◽  
pp. H867-H876 ◽  
Author(s):  
Lei Song ◽  
Zachary M. Zigmond ◽  
Laisel Martinez ◽  
Roberta M. Lassance-Soares ◽  
Alejandro E. Macias ◽  
...  

Atherosclerosis is the most common underlying cause of cardiovascular morbidity and mortality worldwide. c-Kit (CD117) is a member of the receptor tyrosine kinase family, which regulates differentiation, proliferation, and survival of multiple cell types. Recent studies have shown that c-Kit and its ligand stem cell factor (SCF) are present in arterial endothelial cells and smooth muscle cells (SMCs). The role of c-Kit in cardiovascular disease remains unclear. The aim of the current study is to determine the role of c-Kit in atherogenesis. For this purpose, atherosclerotic plaques were quantified in c-Kit-deficient mice (KitMut) after they were fed a high-fat diet (HFD) for 16 wk. KitMut mice demonstrated substantially greater atherosclerosis compared with control (KitWT) littermates ( P < 0.01). Transplantation of c-Kit-positive bone marrow cells into KitMut mice failed to rescue the atherogenic phenotype, an indication that increased atherosclerosis was associated with reduced arterial c-Kit. To investigate the mechanism, SMC organization and morphology were analyzed in the aorta by histopathology and electron microscopy. SMCs were more abundant, disorganized, and vacuolated in aortas of c-Kit mutant mice compared with controls ( P < 0.05). Markers of the “contractile” SMC phenotype (calponin, SM22α) were downregulated with pharmacological and genetic c-Kit inhibition ( P < 0.05). The absence of c-Kit increased lipid accumulation and significantly reduced the expression of the ATP-binding cassette transporter G1 (ABCG1) necessary for lipid efflux in SMCs. Reconstitution of c-Kit in cultured KitMut SMCs resulted in increased spindle-shaped morphology, reduced proliferation, and elevated levels of contractile markers, all indicators of their restored contractile phenotype ( P < 0.05). NEW & NOTEWORTHY This study describes the novel vasculoprotective role of c-Kit against atherosclerosis and its function in the preservation of the SMC contractile phenotype.

2016 ◽  
Vol 113 (34) ◽  
pp. E4995-E5004 ◽  
Author(s):  
Wen Lu ◽  
Michael Winding ◽  
Margot Lakonishok ◽  
Jill Wildonger ◽  
Vladimir I. Gelfand

Cytoplasmic streaming in Drosophila oocytes is a microtubule-based bulk cytoplasmic movement. Streaming efficiently circulates and localizes mRNAs and proteins deposited by the nurse cells across the oocyte. This movement is driven by kinesin-1, a major microtubule motor. Recently, we have shown that kinesin-1 heavy chain (KHC) can transport one microtubule on another microtubule, thus driving microtubule–microtubule sliding in multiple cell types. To study the role of microtubule sliding in oocyte cytoplasmic streaming, we used a Khc mutant that is deficient in microtubule sliding but able to transport a majority of cargoes. We demonstrated that streaming is reduced by genomic replacement of wild-type Khc with this sliding-deficient mutant. Streaming can be fully rescued by wild-type KHC and partially rescued by a chimeric motor that cannot move organelles but is active in microtubule sliding. Consistent with these data, we identified two populations of microtubules in fast-streaming oocytes: a network of stable microtubules anchored to the actin cortex and free cytoplasmic microtubules that moved in the ooplasm. We further demonstrated that the reduced streaming in sliding-deficient oocytes resulted in posterior determination defects. Together, we propose that kinesin-1 slides free cytoplasmic microtubules against cortically immobilized microtubules, generating forces that contribute to cytoplasmic streaming and are essential for the refinement of posterior determinants.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jinwu Peng ◽  
Qiuju Liang ◽  
Zhijie Xu ◽  
Yuan Cai ◽  
Bi Peng ◽  
...  

Exosomes, the small extracellular vesicles, are released by multiple cell types, including tumor cells, and represent a novel avenue for intercellular communication via transferring diverse biomolecules. Recently, microRNAs (miRNAs) were demonstrated to be enclosed in exosomes and therefore was protected from degradation. Such exosomal miRNAs can be transmitted to recipient cells where they could regulate multiple cancer-associated biological processes. Accumulative evidence suggests that exosomal miRNAs serve essential roles in modifying the glioma immune microenvironment and potentially affecting the malignant behaviors and therapeutic responses. As exosomal miRNAs are detectable in almost all kinds of biofluids and correlated with clinicopathological characteristics of glioma, they might be served as promising biomarkers for gliomas. We reviewed the novel findings regarding the biological functions of exosomal miRNAs during glioma pathogenesis and immune regulation. Furthermore, we elaborated on their potential clinical applications as biomarkers in glioma diagnosis, prognosis and treatment response prediction. Finally, we summarized the accessible databases that can be employed for exosome-associated miRNAs identification and functional exploration of cancers, including glioma.


2020 ◽  
Vol 21 (4) ◽  
pp. 1274
Author(s):  
Hideka Saotome ◽  
Atsumi Ito ◽  
Atsushi Kubo ◽  
Masafumi Inui

Sox9 is a master transcription factor for chondrogenesis, which is essential for chondrocyte proliferation, differentiation, and maintenance. Sox9 activity is regulated by multiple layers, including post-translational modifications, such as SUMOylation. A detection method for visualizing the SUMOylation in live cells is required to fully understand the role of Sox9 SUMOylation. In this study, we generated a quantitative reporter for Sox9 SUMOylation that is based on the NanoBiT system. The simultaneous expression of Sox9 and SUMO1 constructs that are conjugated with NanoBiT fragments in HEK293T cells induced luciferase activity in SUMOylation target residue of Sox9-dependent manner. Furthermore, the reporter signal could be detected from both cell lysates and live cells. The signal level of our reporter responded to the co-expression of SUMOylation or deSUMOylation enzymes by several fold, showing dynamic potency of the reporter. The reporter was active in multiple cell types, including ATDC5 cells, which have chondrogenic potential. Finally, using this reporter, we revealed a extracellular signal conditions that can increase the amount of SUMOylated Sox9. In summary, we generated a novel reporter that was capable of quantitatively visualizing the Sox9-SUMOylation level in live cells. This reporter will be useful for understanding the dynamism of Sox9 regulation during chondrogenesis.


2006 ◽  
Vol 95 (5) ◽  
pp. 2866-2877 ◽  
Author(s):  
Brian Hoffpauir ◽  
Emily McMains ◽  
Evanna Gleason

Nitric oxide (NO) is generated by multiple cell types in the vertebrate retina, including amacrine cells. We investigate the role of NO in the modulation of synaptic function using a culture system containing identified retinal amacrine cells. We find that moderate concentrations of NO alter GABAA receptor function to produce an enhancement of the GABA-gated current. Higher concentrations of NO also enhance GABA-gated currents, but this enhancement is primarily due to a substantial positive shift in the reversal potential of the current. Several pieces of evidence, including a similar effect on glycine-gated currents, indicate that the positive shift is due to an increase in cytosolic Cl−. This change in the chloride distribution is especially significant because it can invert the sign of GABA- and glycine-gated voltage responses. Furthermore, current- and voltage-clamp recordings from synaptic pairs of GABAergic amacrine cells demonstrate that NO transiently converts signaling at GABAergic synapses from inhibition to excitation. Persistence of the NO-induced shift in ECl− in the absence of extracellular Cl− indicates that the increase in cytosolic Cl− is due to release of Cl− from an internal store. An NO-dependent release of Cl− from an internal store is also demonstrated for rat hippocampal neurons indicating that this mechanism is not restricted to the avian retina. Thus signaling in the CNS can be fundamentally altered by an NO-dependent mobilization of an internal Cl− store.


2015 ◽  
Vol 43 (5) ◽  
pp. 1112-1115 ◽  
Author(s):  
Sarah J. Stein ◽  
Ethan A. Mack ◽  
Kelly S. Rome ◽  
Warren S. Pear

The tribbles protein family, an evolutionarily conserved group of pseudokinases, have been shown to regulate multiple cellular events including those involved in normal and malignant haematopoiesis. The three mammalian Tribbles homologues, Trib1, Trib2 and Trib3 are characterized by conserved motifs, including a pseudokinase domain and a C-terminal E3 ligase-binding domain. In this review, we focus on the role of Trib (mammalian Tribbles homologues) proteins in mammalian haematopoiesis and leukaemia. The Trib proteins show divergent expression in haematopoietic cells, probably indicating cell-specific functions. The roles of the Trib proteins in oncogenesis are also varied and appear to be tissue-specific. Finally, we discuss the potential mechanisms by which the Trib proteins preferentially regulate these processes in multiple cell types.


2000 ◽  
Vol 279 (5) ◽  
pp. R1753-R1762 ◽  
Author(s):  
Ann M. Schreihofer ◽  
Patrice G. Guyenet

The rostral ventrolateral medulla (RVLM) may play an important role in the sympatholytic and hypotensive effects of clonidine. The present study examined which type of presympathetic RVLM neuron is inhibited by clonidine, and whether the adrenergic presympathetic RVLM neurons are essential for clonidine-induced sympathoinhibition. In chloralose-anesthetized and ventilated rats, clonidine (10 μg/kg iv) decreased arterial pressure (116 ± 6 to 84 ± 2 mmHg) and splanchnic nerve activity (93 ± 3% from baseline). Extracellular recording and juxtacellular labeling of barosensitive bulbospinal RVLM neurons revealed that most cells were inhibited by clonidine (26/28) regardless of phenotype [tyrosine hydroxylase (TH)-immunoreactive cells: 48 ± 7%; non-TH-immunoreactive cells: 42 ± 5%], although the inhibition of most neurons was modest compared with the observed sympathoinhibition. Depletion of most bulbospinal catecholaminergic neurons, including 76 ± 5% of the rostral C1 cells, by microinjection of saporin anti-dopamine β-hydroxylase into the thoracic spinal cord (levels T2 and T4, 42 ng · 200 nl−1 · side−1) did not alter the sympatholytic or hypotensive effects of clonidine. These data show that although clonidine inhibits presympathetic C1 neurons, bulbospinal catecholaminergic neurons do not appear to be essential for the sympatholytic and hypotensive effects of systemically administered clonidine. Instead, the sympatholytic effect of clonidine is likely the result of a combination of effects on multiple cell types both within and outside the RVLM.


2013 ◽  
Vol 110 (12) ◽  
pp. 1207-1214 ◽  
Author(s):  
Xavier Loyer ◽  
Simon Leierseder ◽  
Tobias Petzold ◽  
Lin Zhang ◽  
Steffen Massberg ◽  
...  

SummaryMicroRNAs (miRNAs) are key physiological regulators in multiple cell types. Here, we assessed platelet production and function in mice deficient in miR-223, one of the most abundantly expressed miRNAs in platelets and megakaryocytes. We found platelet number, size, lifespan as well as surface expression of platelet adhesion receptors to be unchanged in miR-223-deficient mice. Likewise, loss of miR-223 did not affect platelet activation, adhesion and aggregation and also had no effect on bleeding times. Moreover, miR-223 null megakaryocytes developed normally and were capable to form pro-platelets. However, we detected a transient delay in the recovery of platelet numbers following antibody-induced platelet depletion in miR-223-deficient animals. This delay was not observed after transplantation of bone marrow from miR-223-deficient animals into wild-type recipients, indicating a non-cell-autonomous role of miR-223 for thrombopoiesis. Overall, our data indicate a surprisingly modest role of miR-223 in platelet production, while the function of platelets does not seem to depend on miR-223.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Rahul Rai ◽  
Asish K Ghosh ◽  
Layton H Smith ◽  
Douglas E Vaughan

Background: Apelinergic signaling is a recently discovered GPCR mediated pathway. Endothelial cells are the main source of endogenous apelin (apln) while apelin receptor (aplnr) is present on multiple cell types. Since the role of endogenous apelinergic pathway within the context of senescence is largely unknown, we ask if levels of apln- aplnr vary with aging. We also investigate the effects of downregulated apln- aplnr on cellular and organismal aging. Approach and Results: To assess variations in endogenous apln- aplnr with aging, we compared their levels in 1 month (young) and 1 year old (old) WT mice. We noticed significant downregulation of apln- aplnr with chronological senescence in multiple tissues. Expression of apelin was also reduced with replicative senescence of endothelial cells. L-NAME administration, a model of stress induced senescence, also repressed aortic and cardiac apln. To address the mechanism involved in downregulation of apln- aplnr, we administered young wild type mice with Ang II. After a week of Ang II, there was significant downregulation of aortic apln and aplnr. Ang II and TGF-β also repressed apln and aplnr in vitro . Next we investigated the effects of downregulated apln on endothelial cells. In response to shRNA mediated apelin knockdown, cells exhibited slower proliferation and upregulated senescence associated markers. We observed similar results when endothelial aplnr was blocked with an antagonist, ML221. In addition, apln and aplnr deficient mice also exhibited features of cardiovascular aging, including ventricular hypertrophy and lower EF. Importantly, aplnr deficient mice at eight months of age were also hypertensive. Conclusion: We provide a systematic assessment of senescence associated variation in levels of apln- aplnr. We demonstrate the role of Ang II- TGF-β axis in downregulating apln- aplnr during chronological and stress induced senescence in vivo and in vitro . We propose a novel model of Ang II- TGF-β induced senescence. Where in, with aging Ang II and TGF-β repress endogenous apln- aplnr. Downregulation of endogenous apln- aplnr axis decreases beneficial “youthful” effects of apelin, resulting in endothelial dysfunction and accelerated organismal aging.


Sign in / Sign up

Export Citation Format

Share Document