scholarly journals Impact of high-fat diet on vasoconstrictor reactivity of white and brown adipose tissue resistance arteries

2019 ◽  
Vol 316 (3) ◽  
pp. H485-H494
Author(s):  
Sugata Hazra ◽  
Grant D. Henson ◽  
R. Colton Bramwell ◽  
Anthony J. Donato ◽  
Lisa A. Lesniewski

Blood flow regulation is a critical factor for tissue oxygenation and substrate supply. Increased reactivity of arteries to vasoconstrictors may increase vascular resistance, resulting in reduced blood flow. We aimed to investigate the effect of a high-fat (HF) diet on stiffness and vasoconstrictor reactivity of white adipose tissue (WAT) and brown adipose tissue (BAT) resistance arteries and also investigated the interconversion of both adipose depots in the setting of a HF diet. Vasoconstrictor reactivity and passive morphology and mechanical properties of arteries from B6D2F1 mice (5 mo old) fed normal chow (NC) or a HF diet (8 wk) were measured using pressure myography. Receptor gene expression in WAT and BAT arteries and markers of WAT and BAT were assessed in whole tissue lysates by real-time RT-PCR. Despite greater receptor-independent vasoconstriction (in response to KCl, P < 0.01), vasoconstriction in response to angiotensin II ( P < 0.01) was lower in NC-BAT than NC-WAT arteries and similar in response to endothelin-1 ( P = 0.07) and norepinephrine ( P = 0.11) in NC-BAT and NC-WAT arteries. With the exception of BAT artery reactivity to endothelin-1 and angiotensin II, the HF diet tended to attenuate reactivity in arteries from both adipose depots and increased expression of adipose markers in BAT. No significant differences in morphology or passive mechanical properties were found between adipose types or diet conditions. Alterations in gene expression of adipose markers after the HF diet suggest beiging of BAT. An increase in brown adipocytes in the absence of increased BAT mass may be a compensatory mechanism to dissipate excess energy from a HF diet. NEW & NOTEWORTHY Despite no differences in passive mechanical properties and greater receptor-independent vasoconstriction, receptor-mediated vasoconstriction was either lower in brown than white adipose tissue arteries or similar in brown and white adipose tissue arteries. A high-fat diet has a greater impact on vasoconstrictor responses in white adipose tissue but leads to altered adipose tissue gene expression consistent with beiging of the brown adipose tissue. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/vasoconstriction-in-white-and-brown-adipose/ .

Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 308 ◽  
Author(s):  
Hyo-Geun Lee ◽  
Yu An Lu ◽  
Xining Li ◽  
Ji-Min Hyun ◽  
Hyun-Soo Kim ◽  
...  

Obesity is a serious metabolic syndrome characterized by high levels of cholesterol, lipids in the blood, and intracellular fat accumulation in adipose tissues. It is known that the suppression of adipogenic protein expression is an effective approach for the treatment of obesity, and regulates fatty acid storage and transportation in adipose tissues. The 60% ethanol extract of Grateloupia elliptica (GEE), a red seaweed from Jeju Island in Korea, was shown to exert anti-adipogenic activity in 3T3-L1 cells and in mice with high-fat diet (HFD)-induced obesity. GEE inhibited intracellular lipid accumulation in 3T3-L1 cells, and significantly reduced expression of adipogenic proteins. In vivo experiments indicated a significant reduction in body weight, as well as white adipose tissue (WAT) weight, including fatty liver, serum triglycerides, total cholesterol, and leptin contents. The expression of the adipogenic proteins, SREBP-1 and PPAR-γ, was significantly decreased by GEE, and the expression of the metabolic regulator protein was increased in WAT. The potential of GEE was shown in WAT, with the downregulation of PPAR-γ and C/EBP-α mRNA; in contrast, in brown adipose tissue (BAT), the thermogenic proteins were increased. Collectively, these research findings suggest the potential of GEE as an effective candidate for the treatment of obesity-related issues via functional foods or pharmaceutical agents.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1370
Author(s):  
Yufeng Shi ◽  
Honglei Zhai ◽  
Sharon John ◽  
Yi-Ting Shen ◽  
Yali Ran ◽  
...  

Obesity, a dysregulation of adipose tissue, is a major health risk factor associated with many diseases. Brown adipose tissue (BAT)-mediated thermogenesis can potentially regulate energy expenditure, making it an attractive therapeutic target to combat obesity. Here, we characterize the effects of cold exposure, thermoneutrality, and high-fat diet (HFD) feeding on mouse supraclavicular BAT (scBAT) morphology and BAT-associated gene expression compared to other adipose depots, including the interscapular BAT (iBAT). scBAT was as sensitive to cold induced thermogenesis as iBAT and showed reduced thermogenic effect under thermoneutrality. While both scBAT and iBAT are sensitive to cold, the expression of genes involved in nutrient processing is different. The scBAT also showed less depot weight gain and more single-lipid adipocytes, while the expression of BAT thermogenic genes, such as Ucp1, remained similar or increased more under our HFD feeding regime at ambient and thermoneutral temperatures than iBAT. Together, these findings show that, in addition to its anatomical resemblance to human scBAT, mouse scBAT possesses thermogenic features distinct from those of other adipose depots. Lastly, this study also characterizes a previously unknown mouse deep neck BAT (dnBAT) depot that exhibits similar thermogenic characteristics as scBAT under cold exposure and thermoneutrality.


2020 ◽  
Vol 7 (3) ◽  
pp. 426-430
Author(s):  
Meral Dağ ◽  
Muhittin Yürekli

Objective: Obesity, which is one of the most important health problems of today's people, remains current due to the risks of illness it brings due to the increase rate in the world. Material and Methods: Male Sprague Dawley rats were used in our study of obesity. Rats were divided into four groups as standard diet/ normal oxygen, standard diet/low oxygen, high-fat diet/normal oxygen and high-fat diet / low oxygen. For the study, a special cage with a low oxygen level of 17-18% was made in a closed system. After achieving the desired 25% weight increase in obese group rats, blood, liver, lung, white adipose tissue and brown adipose tissue were obtained from the rats. In these tissues, adrenomedullin, hypoxic inducible factor 1-α (HIF1-α) and matrix metalloproteinase-II (MMP-II) levels were measured by ELISA. Results: According to our results, there was a significant increase in adrenomedullin, HIF1-α and MMP-II in white adipose tissue, and adrenomedullin and MMP-II in brown adipose tissue. It was found that the amount of HIF1-α increased significantly in liver and lung tissues. Conclusion: According to the metabolic status of adipose tissue, it is thought that the effect of adrenomedullin, HIF1-α and MMP-II can increase vascularization of brown adipose tissue and provide energy consumption.


1987 ◽  
Vol 253 (2) ◽  
pp. E149-E157
Author(s):  
H. K. Kim ◽  
D. R. Romsos

Adrenalectomy prevents development of obesity in ob/ob mice fed high-carbohydrate stock diets partly by stimulating the low thermogenic capacity of their brown adipose tissue (BAT). Adrenalectomy, however, fails to prevent development of obesity in ob/ob mice fed a high-fat diet. Effects of adrenalectomy on BAT metabolism in ob/ob mice fed a high-fat diet were thus examined. ob/ob mice fed the high-fat diet developed gross obesity despite normal BAT metabolism, as assessed by rates of norepinephrine turnover in BAT, GDP binding to BAT mitochondria, and GDP-inhibitable, chloride-induced mitochondrial swelling. Adrenalectomy failed to arrest the development of obesity or to influence BAT metabolism in ob/ob mice fed the high-fat diet. Development of obesity in ob/ob mice fed a high-fat diet is not associated with low thermogenic capacity of BAT or with adrenal secretions, as it is in ob/ob mice fed high-carbohydrate stock diets.


2020 ◽  
Vol 34 (9) ◽  
pp. 12450-12465 ◽  
Author(s):  
Vincenzo Marzolla ◽  
Alessandra Feraco ◽  
Stefania Gorini ◽  
Caterina Mammi ◽  
Carmen Marrese ◽  
...  

1984 ◽  
Vol 247 (6) ◽  
pp. E800-E807
Author(s):  
J. Triandafillou ◽  
W. Hellenbrand ◽  
J. Himms-Hagen

Hamsters with muscular dystrophy (BIO 14.6) have a smaller than normal amount of brown adipose tissue. Two stimuli that promote growth of brown adipose tissue in normal hamsters, short photoperiod and eating a high-fat diet, are here shown to be without effect on brown adipose tissue of myopathic hamsters. Cold-induced growth of brown adipose tissue occurs normally [Am. J. Physiol. 239 (Cell Physiol. 8): C18–C22, 1980]. There is a normal rate of turnover of norepinephrine in brown adipose tissue of the myopathic hamster but a failure of the tissue to hypertrophy in response to norepinephrine is unlikely since norepinephrine does not appear to mediate the trophic response [Am. J. Physiol. 247 (Endocrinol. Metab. 10): E793–E799, 1984]. Denervation results in a marked reduction in size (protein content) of brown adipose tissue of normal hamsters but has very little effect on the size of brown adipose tissue of myopathic hamsters. A central, possibly hypothalamic, defect in the myopathic hamster is postulated to underlie its abnormal control of brown adipose tissue hypertrophy.


Author(s):  
Gabriela S. Perez ◽  
Gabriele D.S. Cordeiro ◽  
Lucimeire S. Santos ◽  
Djane D.A. Espírito-Santo ◽  
Gilson T. Boaventura ◽  
...  

1987 ◽  
Vol 252 (2) ◽  
pp. R402-R408 ◽  
Author(s):  
T. Yoshida ◽  
J. S. Fisler ◽  
M. Fukushima ◽  
G. A. Bray ◽  
R. A. Schemmel

The effects of dietary fat content, lighting cycle, and feeding time on norepinephrine turnover in interscapular brown adipose tissue, heart, and pancreas, and on blood 3-hydroxybutyrate, serum glucose, insulin, and corticosterone have been studied in two strains of rats that differ in their susceptibility to dietary obesity. S 5B/Pl rats, which are resistant to dietary obesity, have a more rapid turnover of norepinephrine in interscapular brown adipose tissue and heart and a greater increase in the concentration of norepinephrine in brown fat when eating a high-fat diet than do Osborne-Mendel rats, which are sensitive to fat-induced obesity. Light cycle and feeding schedule are important modulators of sympathetic activity in heart and pancreas but not in brown fat. Rats of the resistant strain also have higher blood 3-hydroxybutyrate concentrations and lower insulin and corticosterone levels than do rats of the susceptible strain. A high-fat diet increases 3-hydroxybutyrate concentrations and reduces insulin levels in both strains. These studies show, in rats eating a high-fat diet, that differences in norepinephrine turnover, particularly in brown adipose tissue, may play an important role in whether dietary obesity develops and in the manifestations of resistance to this phenomenon observed in the S 5B/Pl rat.


Sign in / Sign up

Export Citation Format

Share Document