scholarly journals Cortical bone stem cells modify cardiac inflammation after myocardial infarction by inducing a novel macrophage phenotype

2021 ◽  
Vol 321 (4) ◽  
pp. H684-H701
Author(s):  
Alexander R. H. Hobby ◽  
Remus M. Berretta ◽  
Deborah M. Eaton ◽  
Hajime Kubo ◽  
Eric Feldsott ◽  
...  

Cortical bone stem cell (CBSC) therapy after myocardial infarction alters the inflammatory response to cardiac injury. We found that cortical bone stem cell therapy induces a unique macrophage phenotype in vitro and can modulate macrophage/fibroblast cross talk.

2019 ◽  
Vol 125 (Suppl_1) ◽  
Author(s):  
Alexander Hobby ◽  
Remus Berretta ◽  
Giulia Borghetti ◽  
Eric Feldsott ◽  
Deborah Eaton ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Gee-Hye Kim ◽  
Yun Kyung Bae ◽  
Ji Hye Kwon ◽  
Miyeon Kim ◽  
Soo Jin Choi ◽  
...  

Autophagy plays a critical role in stem cell maintenance and is related to cell growth and cellular senescence. It is important to find a quality-control marker for predicting senescent cells. This study verified that CD47 could be a candidate to select efficient mesenchymal stem cells (MSCs) to enhance the therapeutic effects of stem cell therapy by analyzing the antibody surface array. CD47 expression was significantly decreased during the expansion of MSCs in vitro ( p < 0.01 ), with decreased CD47 expression correlated with accelerated senescence phenotype, which affected cell growth. UCB-MSCs transfected with CD47 siRNA significantly triggered the downregulation of pRB and upregulation of pp38, which are senescence-related markers. Additionally, autophagy-related markers, ATG5, ATG12, Beclin1, and LC3B, revealed significant downregulation with CD47 siRNA transfection. Furthermore, autophagy flux following treatment with an autophagy inducer, rapamycin, has shown that CD47 is a key player in autophagy and senescence to maintain and regulate the growth of MSCs, suggesting that CD47 may be a critical key marker for the selection of effective stem cells in cell therapy.


2018 ◽  
Vol 123 (Suppl_1) ◽  
Author(s):  
Alexander R Hobby ◽  
Thomas E Sharp ◽  
Eric Feldsott ◽  
Sadia Mohsin ◽  
Hajime Kubo ◽  
...  

2019 ◽  
Vol 19 (8) ◽  
pp. 539-546
Author(s):  
Jing Wang ◽  
Chi Liu ◽  
Masayuki Fujino ◽  
Guoqing Tong ◽  
Qinxiu Zhang ◽  
...  

Worldwide, infertility affects 8-12% of couples of reproductive age and has become a common problem. There are many ways to treat infertility, including medication, intrauterine insemination, and in vitro fertilization. In recent years, stem-cell therapy has raised new hope in the field of reproductive disability management. Stem cells are self-renewing, self-replicating undifferentiated cells that are capable of producing specialized cells under appropriate conditions. They exist throughout a human’s embryo, fetal, and adult stages and can proliferate into different cells. While many issues remain to be addressed concerning stem cells, stem cells have undeniably opened up new ways to treat infertility. In this review, we describe past, present, and future strategies for the use of stem cells in reproductive medicine.


2021 ◽  
Author(s):  
Sevil Kestane

This overview was evaluated by the development of diabetic retinopathy (DR) and the stem cell therapy approach. DR is a microvascular complication of diabetes mellitus, characterized by damage to the retinal blood vessels leading to progressive loss of vision. However, the pathophysiological mechanisms are complicated and not completely understood yet. The current treatment strategies have included medical, laser, intravitreal, and surgical approaches. It is known that the use of mesenchymal stem cells (MSC), which has a great potential, is promising for the treatment of many degenerative disorders, including the eye. In retinal degenerative diseases, MSCs were ameliorated retinal neurons and retinal pigmented epithelial cells in both in vitro and in vivo studies. Stem cell therapies show promise in neurodegenerative diseases. However, it is very important to know which type of stem cell will be used in which situations, the amount of stem cells to be applied, the method of application, and its physiological/neurophysiological effects. Therefore, it is of great importance to evaluate this subject physiologically. After stem cell application, its safety and efficacy should be followed for a long time. In the near future, widespread application of regenerative stem cell therapy may be a standard treatment in DR.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Boxian Huang ◽  
Chunfeng Qian ◽  
Chenyue Ding ◽  
Qingxia Meng ◽  
Qinyan Zou ◽  
...  

Abstract Background With the development of regenerative medicine and tissue engineering technology, almost all stem cell therapy is efficacious for the treatment of premature ovarian failure (POF) or premature ovarian insufficiency (POI) animal models, whereas little stem cell therapy has been practiced in clinical settings. The underlying molecular mechanism and safety of stem cell treatment in POI are not fully understood. In this study, we explored whether fetal mesenchymal stem cells (fMSCs) from the liver restore ovarian function and whether melatonin membrane receptor 1 (MT1) acts as a regulator for treating POI disease. Methods We designed an in vivo model (chemotherapy-induced ovary damage) and an in vitro model (human ovarian granulosa cells (hGCs)) to understand the efficacy and molecular cues of fMSC treatment of POI. Follicle development was observed by H&E staining. The concentration of sex hormones in serum (E2, AMH, and FSH) and the concentration of oxidative and antioxidative metabolites and the enzymes MDA, SOD, CAT, LDH, GR, and GPx were measured by ELISA. Flow cytometry (FACS) was employed to detect the percentages of ROS and proliferation rates. mRNA and protein expression of antiapoptotic genes (SURVIVIN and BCL2), apoptotic genes (CASPASE-3 and CASPASE-9), and MT1 and its downstream genes (JNK1, PCNA, AMPK) were tested by qPCR and western blotting. MT1 siRNA and related antagonists were used to assess the mechanism. Results fMSC treatment prevented cyclophosphamide (CTX)-induced follicle loss and recovered sex hormone levels. Additionally, fMSCs significantly decreased oxidative damage, increased oxidative protection, improved antiapoptotic effects, and inhibited apoptotic genes in vivo and in vitro. Furthermore, fMSCs also upregulated MT1, JNK1, PCNA, and AMPK at the mRNA and protein levels. With MT1 knockdown or antagonist treatment in normal hGCs, the protein expression of JNK1, PCNA, and AMPK and the percentage of proliferation were impaired. Conclusions fMSCs might play a crucial role in mediating follicular development in the POI mouse model and stimulating the activity of POI hGCs by targeting MT1.


2020 ◽  
Vol 15 (5) ◽  
pp. 1679-1688
Author(s):  
Alex HP Chan ◽  
Ngan F Huang

Although stem cell therapy has tremendous therapeutic potential, clinical translation of stem cell therapy has yet to be fully realized. Recently, patient comorbidities and lifestyle choices have emerged to be important factors in the efficacy of stem cell therapy. Tobacco usage is an important risk factor for numerous diseases, and nicotine exposure specifically has become increasing more prevalent with the rising use of electronic cigarettes. This review describes the effects of nicotine exposure on the function of various stem cells. We place emphasis on the differential effects of nicotine exposure in vitro and as well as in preclinical models. Further research on the effects of nicotine on stem cells will deepen our understanding of how lifestyle choices can impact the outcome of stem cell therapies.


2017 ◽  
Vol 121 (11) ◽  
pp. 1263-1278 ◽  
Author(s):  
Thomas E. Sharp ◽  
Giana J. Schena ◽  
Alexander R. Hobby ◽  
Timothy Starosta ◽  
Remus M. Berretta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document