scholarly journals Diabetic Retinopathy and Stem Cell Therapy

2021 ◽  
Author(s):  
Sevil Kestane

This overview was evaluated by the development of diabetic retinopathy (DR) and the stem cell therapy approach. DR is a microvascular complication of diabetes mellitus, characterized by damage to the retinal blood vessels leading to progressive loss of vision. However, the pathophysiological mechanisms are complicated and not completely understood yet. The current treatment strategies have included medical, laser, intravitreal, and surgical approaches. It is known that the use of mesenchymal stem cells (MSC), which has a great potential, is promising for the treatment of many degenerative disorders, including the eye. In retinal degenerative diseases, MSCs were ameliorated retinal neurons and retinal pigmented epithelial cells in both in vitro and in vivo studies. Stem cell therapies show promise in neurodegenerative diseases. However, it is very important to know which type of stem cell will be used in which situations, the amount of stem cells to be applied, the method of application, and its physiological/neurophysiological effects. Therefore, it is of great importance to evaluate this subject physiologically. After stem cell application, its safety and efficacy should be followed for a long time. In the near future, widespread application of regenerative stem cell therapy may be a standard treatment in DR.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Boxian Huang ◽  
Chunfeng Qian ◽  
Chenyue Ding ◽  
Qingxia Meng ◽  
Qinyan Zou ◽  
...  

Abstract Background With the development of regenerative medicine and tissue engineering technology, almost all stem cell therapy is efficacious for the treatment of premature ovarian failure (POF) or premature ovarian insufficiency (POI) animal models, whereas little stem cell therapy has been practiced in clinical settings. The underlying molecular mechanism and safety of stem cell treatment in POI are not fully understood. In this study, we explored whether fetal mesenchymal stem cells (fMSCs) from the liver restore ovarian function and whether melatonin membrane receptor 1 (MT1) acts as a regulator for treating POI disease. Methods We designed an in vivo model (chemotherapy-induced ovary damage) and an in vitro model (human ovarian granulosa cells (hGCs)) to understand the efficacy and molecular cues of fMSC treatment of POI. Follicle development was observed by H&E staining. The concentration of sex hormones in serum (E2, AMH, and FSH) and the concentration of oxidative and antioxidative metabolites and the enzymes MDA, SOD, CAT, LDH, GR, and GPx were measured by ELISA. Flow cytometry (FACS) was employed to detect the percentages of ROS and proliferation rates. mRNA and protein expression of antiapoptotic genes (SURVIVIN and BCL2), apoptotic genes (CASPASE-3 and CASPASE-9), and MT1 and its downstream genes (JNK1, PCNA, AMPK) were tested by qPCR and western blotting. MT1 siRNA and related antagonists were used to assess the mechanism. Results fMSC treatment prevented cyclophosphamide (CTX)-induced follicle loss and recovered sex hormone levels. Additionally, fMSCs significantly decreased oxidative damage, increased oxidative protection, improved antiapoptotic effects, and inhibited apoptotic genes in vivo and in vitro. Furthermore, fMSCs also upregulated MT1, JNK1, PCNA, and AMPK at the mRNA and protein levels. With MT1 knockdown or antagonist treatment in normal hGCs, the protein expression of JNK1, PCNA, and AMPK and the percentage of proliferation were impaired. Conclusions fMSCs might play a crucial role in mediating follicular development in the POI mouse model and stimulating the activity of POI hGCs by targeting MT1.


2020 ◽  
Vol 15 (5) ◽  
pp. 1679-1688
Author(s):  
Alex HP Chan ◽  
Ngan F Huang

Although stem cell therapy has tremendous therapeutic potential, clinical translation of stem cell therapy has yet to be fully realized. Recently, patient comorbidities and lifestyle choices have emerged to be important factors in the efficacy of stem cell therapy. Tobacco usage is an important risk factor for numerous diseases, and nicotine exposure specifically has become increasing more prevalent with the rising use of electronic cigarettes. This review describes the effects of nicotine exposure on the function of various stem cells. We place emphasis on the differential effects of nicotine exposure in vitro and as well as in preclinical models. Further research on the effects of nicotine on stem cells will deepen our understanding of how lifestyle choices can impact the outcome of stem cell therapies.


2018 ◽  
Vol 6 (3) ◽  
pp. 114-119 ◽  
Author(s):  
Magdalena Rojewska ◽  
Małgorzata Popis ◽  
Maurycy Jankowski ◽  
Dorota Bukowska ◽  
Paweł Antosik ◽  
...  

AbstractStem cells are cells that have the potential to replicate and/or differentiate, becoming any tissue. This process could be theoretically repeated indefinitely and can be used to create or fix damaged parts any organ. There are many in vivo factors that cause stem cells to replicate and differentiate. Many of these interactions and mechanisms are still unknown. In vitro models have been successful in inducing stem cells to differentiate into the desired lineage using controlled methods. Recently, epithelial tissue has been successfully created using scaffolds on which stem cells are grown in vitro and then transplanted into the host. This transition creates significant problems. This is because in vitro -grown stem cells or stem cell-derived tissues are created in an isolated environment where virtually every aspect can be monitored and controlled. In vivo monitoring and controlling is significantly more difficult for a plethora of reasons. Cells in the body are constantly exposed to many signals and molecules which affect them. Many of the mechanisms behind these interactions and reactions are known but many others are not. As the corpus of knowledge grows, stem cells become closer to being applied in a clinical setting. In this paper, we review the current evidence on stem cell therapy in regenerative medicine and some of the challenges this field faces.


2021 ◽  
Vol 22 (4) ◽  
pp. 1824
Author(s):  
Matthias Mietsch ◽  
Rabea Hinkel

With cardiovascular diseases affecting millions of patients, new treatment strategies are urgently needed. The use of stem cell based approaches has been investigated during the last decades and promising effects have been achieved. However, the beneficial effect of stem cells has been found to being partly due to paracrine functions by alterations of their microenvironment and so an interesting field of research, the “stem- less” approaches has emerged over the last years using or altering the microenvironment, for example, via deletion of senescent cells, application of micro RNAs or by modifying the cellular energy metabolism via targeting mitochondria. Using autologous muscle-derived mitochondria for transplantations into the affected tissues has resulted in promising reports of improvements of cardiac functions in vitro and in vivo. However, since the targeted treatment group represents mainly elderly or otherwise sick patients, it is unclear whether and to what extent autologous mitochondria would exert their beneficial effects in these cases. Stem cells might represent better sources for mitochondria and could enhance the effect of mitochondrial transplantations. Therefore in this review we aim to provide an overview on aging effects of stem cells and mitochondria which might be important for mitochondrial transplantation and to give an overview on the current state in this field together with considerations worthwhile for further investigations.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yanhong Zhang ◽  
Honghong Yao

Stem cell therapy is a promising potential therapeutic strategy to treat cerebral ischemia in preclinical and clinical trials. Currently proposed treatments for stroke employing stem cells include the replacement of lost neurons and integration into the existing host circuitry, the release of growth factors to support and promote endogenous repair processes, and the secretion of extracellular vesicles containing proteins, noncoding RNA, or DNA to regulate gene expression in recipient cells and achieve immunomodulation. Progress has been made to elucidate the precise mechanisms underlying stem cell therapy and the homing, migration, distribution, and differentiation of transplanted stem cells in vivo using various imaging modalities. Noninvasive and safe tracer agents with high sensitivity and image resolution must be combined with long-term monitoring using imaging technology to determine the optimal therapy for stroke in terms of administration route, dosage, and timing. This review discusses potential therapeutic mechanisms of stem cell transplantation for the treatment of stroke and the limitations of current therapies. Methods to label transplanted cells and existing imaging systems for stem cell labeling and in vivo tracking will also be discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Sung Keun Kang ◽  
Il Seob Shin ◽  
Myung Soon Ko ◽  
Jung Youn Jo ◽  
Jeong Chan Ra

Human mesenchymal stem cells (MSCs) communicate with other cells in the human body and appear to “home” to areas of injury in response to signals of cellular damage, known as homing signals. This review of the state of current research on homing of MSCs suggests that favorable cellular conditions and thein vivoenvironment facilitate and are required for the migration of MSCs to the site of insult or injuryin vivo. We review the current understanding of MSC migration and discuss strategies for enhancing both the environmental and cellular conditions that give rise to effective homing of MSCs. This may allow MSCs to quickly find and migrate to injured tissues, where they may best exert clinical benefits resulting from improved homing and the presence of increased numbers of MSCs.


2014 ◽  
Vol 175 ◽  
pp. 13-26 ◽  
Author(s):  
Yung-Kang Peng ◽  
Cathy N. P. Lui ◽  
Tsen-Hsuan Lin ◽  
Chen Chang ◽  
Pi-Tai Chou ◽  
...  

Neural stem cells (NSCs), which generate the main phenotypes of the nervous system, are multipotent cells and are able to differentiate into multiple cell types via external stimuli from the environment. The extraction, modification and re-application of NSCs have thus attracted much attention and raised hopes for novel neural stem cell therapies and regenerative medicine. However, few studies have successfully identified the distribution of NSCs in a live brain and monitored the corresponding extraction processes both in vitro and in vivo. To address those difficulties, in this study multi-functional uniform nanoparticles comprising an iron oxide core and a functionalized silica shell (Fe3O4@SiO2(FITC)-CD133, FITC: a green emissive dye, CD133: anti-CD133 antibody) have been strategically designed and synthesized for use as probe nanocomposites that provide four-in-one functionality, i.e., magnetic agitation, dual imaging (both magnetic resonance and optical) and specific targeting. It is shown that these newly synthesized Fe3O4@SiO2(FITC)-CD133 particles have clearly demonstrated their versatility in various applications. (1) The magnetic core enables magnetic cell collection and T2 magnetic resonance imaging. (2) The fluorescent FITC embedded in the silica framework enables optical imaging. (3) CD133 anchored on the outermost surface is demonstrated to be capable of targeting neural stem cells for cell collection and bimodal imaging.


2020 ◽  
pp. 1-2
Author(s):  
Shantha A R

Stem cells are the building blocks of life. They have remarkable potential to regenerate and develop into many different cell types in the body during early life and growth. They are also a class of undifferentiated cells that are able to be differentiated into specialized cells types. Stem cells are characterized by certain features such as totipotency, pluripotency, multipotency, oligopotent and unipotency. The history of stem cell research had an embryonic beginning in the mid 1800s with the discovery that few cells could generate other cells. In the 1900s the first stem cells were discovered when it was found that cells generate blood cells. Nowadays, stem cell therapy is under research and till now, a very few stem cell therapies have been regarded as safe and successful. It is also found that stem cell therapy cast a number of side effects too. The cost of the procedure too is expensive and is not easily affordable.


Author(s):  
Qi Zhang ◽  
Xin-xing Wan ◽  
Xi-min Hu ◽  
Wen-juan Zhao ◽  
Xiao-xia Ban ◽  
...  

Stem cell therapies have shown promising therapeutic effects in restoring damaged tissue and promoting functional repair in a wide range of human diseases. Generations of insulin-producing cells and pancreatic progenitors from stem cells are potential therapeutic methods for treating diabetes and diabetes-related diseases. However, accumulated evidence has demonstrated that multiple types of programmed cell death (PCD) existed in stem cells post-transplantation and compromise their therapeutic efficiency, including apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. Understanding the molecular mechanisms in PCD during stem cell transplantation and targeting cell death signaling pathways are vital to successful stem cell therapies. In this review, we highlight the research advances in PCD mechanisms that guide the development of multiple strategies to prevent the loss of stem cells and discuss promising implications for improving stem cell therapy in diabetes and diabetes-related diseases.


Sign in / Sign up

Export Citation Format

Share Document