scholarly journals Restoring redox balance enhances contractility in heart trabeculae from type 2 diabetic rats exposed to high glucose

2015 ◽  
Vol 308 (4) ◽  
pp. H291-H302 ◽  
Author(s):  
Niraj M. Bhatt ◽  
Miguel A. Aon ◽  
Carlo G. Tocchetti ◽  
Xiaoxu Shen ◽  
Swati Dey ◽  
...  

Hearts from type 2 diabetic (T2DM) subjects are chronically subjected to hyperglycemia and hyperlipidemia, both thought to contribute to oxidizing conditions and contractile dysfunction. How redox alterations and contractility interrelate, ultimately diminishing T2DM heart function, remains poorly understood. Herein we tested whether the fatty acid palmitate (Palm), in addition to its energetic contribution, rescues function by improving redox [glutathione (GSH), NAD(P)H, less oxidative stress] in T2DM rat heart trabeculae subjected to high glucose. Using cardiac trabeculae from Zucker Diabetic Fatty (ZDF) rats, we assessed the impact of low glucose (EG) and high glucose (HG), in absence or presence of Palm or insulin, on force development, energetics, and redox responses. We found that in EG ZDF and lean trabeculae displayed similar contractile work, yield of contractile work (Ycw), representing the ratio of force time integral over rate of O2 consumption. Conversely, HG had a negative impact on Ycw, whereas Palm, but not insulin, completely prevented contractile loss. This effect was associated with higher GSH, less oxidative stress, and augmented matrix GSH/thioredoxin (Trx) in ZDF mitochondria. Restoration of myocardial redox with GSH ethyl ester also rescued ZDF contractile function in HG, independently from Palm. These results support the idea that maintained redox balance, via increased GSH and Trx antioxidant activities to resist oxidative stress, is an essential protective response of the diabetic heart to keep contractile function.

2021 ◽  
Author(s):  
Huogen Liu ◽  
Ling Gu ◽  
Yundi Shi ◽  
Hailin Shu ◽  
Fengming Huang ◽  
...  

Abstract Background This study aimed to investigate the diagnostic function of CD36 in type 2 diabetic (T2DM) sepsis complications (T2DSC) and its effect on β-cell differentiation. Methods First, Age - and sex-matched T2DM patients, T2DSC patients and healthy people (50 cases each) were included. Quantitative polymerase chain reaction was used to measure CD36, FOXO1, PDX1, MAFA, insulin, SOX9, Neurog3 and NANOG expression in blood samples. Second, cultured human β-cell line EndoC-βH1 and the interference and overexpression of CD36. Cell clone, apoptosis, inflammatory cytokine, oxidative stress and β-cell differentiation related proteins were also analysed. Third, examined the role of CD36 in high glucose, LPS-induced β-cell. Results CD36 mRNA, and endocrine progenitor β-cell biomarkers SOX9, Neurog3 and NANOG were significantly increased in T2DM than control group, whereas the β-cell maturation biomarkers FOXO1, PDX1, MAFA and insulin were significantly decreased. Compared with the T2DM group, CD36 and FOXO1 were significantly increased in T2DSC, but PDX1, insulin, MAFA, SOX9, Neurog3 and NANOG were significantly decreased. The receiver operating characteristic curve revealed that CD36 was useful for distinguishing T2MD and T2DSC from the control group. Furthermore, CD36 overexpression increased β-cell apoptosis and the secretion of IL-1β, IL-8 TNF-α, malondialdehyde and reactive oxygen species. CD36 induced cell defferentiation. Lastly, CD36 knockdown could inhibit the high glucose and LPS-induced cell apoptosis, inflammatory, oxidative stress and cell defferentiation. Conclusion Significant increase in CD36 can be used as a biomarker for T2MD and T2DSC. CD36 promotes T2MD or T2DSC development by inducing β-cell inflammatory and oxidative stress and defferentiation.


2016 ◽  
Vol 103 (4) ◽  
pp. 459-468 ◽  
Author(s):  
V Ghorbanzadeh ◽  
M Mohammadi ◽  
G Mohaddes ◽  
H Dariushnejad ◽  
L Chodari ◽  
...  

Background Oxidative stress plays a critical role in the pathogenesis and progression of type 2 diabetes and diabetic-associated cardiovascular complications. This study investigated the impact of crocin combined with voluntary exercise on heart oxidative stress indicator in high-fat diet-induced type 2 diabetic rats. Materials and methods Rats were divided into four groups: diabetes, diabetic-crocin, diabetic-voluntary exercise, diabetic-crocin-voluntary exercise. Type 2 diabetes was induced by high-fat diet (4 weeks) and injection of streptozotocin (intraperitoneally, 35 mg/kg). Animals received crocin orally (50 mg/kg); voluntary exercise was performed alone or combined with crocin treatment for 8 weeks. Finally, malondialdehyde (MDA), activity of antioxidant enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were measured spectrophotometrically. Results Treatment of diabetic rats with crocin and exercise significantly decreased the levels of MDA (p < 0.001) and increased the activity of SOD, GPx, and CAT compared with the untreated diabetic group. In addition, combination of exercise and crocin amplified their effect on antioxidant levels in the heart tissue of type 2 diabetic rats. Conclusion We suggest that a combination of crocin with voluntary exercise treatment may cause more beneficial effects in antioxidant defense system of heart tissues than the use of crocin or voluntary exercise alone.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Megumi Kondo ◽  
KENGO KIDOKORO ◽  
Yoshihisa Wada ◽  
Atsuyuki Tokuyama ◽  
Hiroyuki Kadoya ◽  
...  

Abstract Background and Aims In most developed countries, diabetic kidney disease (DKD) is the most common cause of chronic kidney disease, which can lead to end-stage renal disease. In recent clinical trials, sodium–glucose cotransporter 2 inhibitors (SGLT2is) slowed the progression of kidney disease as compared with a placebo in patients with type 2 diabetes. One of the main mechanisms of the renoprotective effects of SCLT2is in DKD is considered the ability of these inhibitors to improve glomerular hyperfiltration. We previously demonstrated that the adenosine/adenosine A1 receptor pathway played a pivotal role in the tubuloglomerular feedback(TGF) system in a type 1 diabetic model, Akita mice (Circulation, 2019). We also reported that increased oxidative stress was involved in the pathogenesis of diabetic vascular complications. Uncoupling of endothelial nitric oxide (NO) synthase (eNOS) via oxidation of tetrahydrobiopterin (BH4), a cofactor required for NO production, played a major role in generation of oxidative stress (AJPRP, 2005; JASN, 2013). In the present study, we explored the renal protective effects of SGLT2 inhibition, with a focus on glomerular hemodynamics and glomerular oxidative stress. Method This study used type 2 diabetic db/db mice and db/m+ mice as a control (male, 8wk old). We developed a novel method to measure the glomerular filtration rate of single nephrons (SNGFRs) in mice using multiphoton laser microscopy. In the first experiment, we measured the SNGFRs in 12 wk-old db/db and db/m+ mice to confirm glomerular hyperfiltration. Next, we evaluated the SNGFRs change before and after the administration of a single dose of canagliflozin (CANA) (10 mg/kg). The SNGFRs, glomerular permeability of macromolecules, glomerular reactive oxygen species (ROS) and NO production, and tetrahydrobiopterin (BH4) level in serum and kidney were evaluated after the CANA treatment for 8 wk. Finally, human glomerular endothelial cells (hGECs) were exposed to normal glucose (5 mmol/L), high glucose (30 mmol/L of D-glucose), or a hyperosmotic control (5 mmol/L of D-glucose plus 25 mmol/L of L-glucose) in the presence or absence of CANA (10 μmol/L). Results The CANA treatment ameliorated glomerular hyperfiltration in the db/db mice. In the db/db mice, glomerulus ROS production increased, and NO production decreased as compared with the levels in the control mice. CANA improved the imbalance between ROS and NO production. The serum and kidney concentrations of BH4 declined in the non-treated db/db mice, whereas the CANA treatment preserved the BH4 level. Leakage of 70-kD FITC-labeled albumin into the urinary space was observed in the db/db mice. The CANA treatment reduced the amount of FITC-labeled albumin in the urinary space of the db/db mice. The CANA treatment also alleviated vascular endothelial damage in glomeruli. BH4 levels decreased in the hGECs exposed to high glucose. CANA did not improved BH4 level in the hGECs exposed to high glucose. Conclusion SGLT2i ameliorated glomerular hyperfiltration, preserving BH4 levels and improving the glomerular ROS/NO imbalance in type 2 diabetic mice.


2016 ◽  
Vol 22 (18) ◽  
pp. 2650-2656 ◽  
Author(s):  
Noelia Diaz-Morales ◽  
Susana Rovira-Llopis ◽  
Irene Escribano-Lopez ◽  
Celia Bañuls ◽  
Sandra Lopez-Domenech ◽  
...  

2020 ◽  
Vol 20 (7) ◽  
pp. 1117-1132
Author(s):  
Abdelaziz M. Hussein ◽  
Elsayed A. Eid ◽  
Ismaeel Bin-Jaliah ◽  
Medhat Taha ◽  
Lashin S. Lashin

Background and Aims: In the current work, we studied the effects of exercise and stevia rebaudiana (R) extracts on diabetic cardiomyopathy (DCM) in type 2 diabetic rats and their possible underlying mechanisms. Methods: : Thirty-two male Sprague Dawley rats were randomly allocated into 4 equal groups; a) normal control group, b) DM group, type 2 diabetic rats received 2 ml oral saline daily for 4 weeks, c) DM+ Exercise, type 2 diabetic rats were treated with exercise for 4 weeks and d) DM+ stevia R extracts: type 2 diabetic rats received methanolic stevia R extracts. By the end of the experiment, serum blood glucose, HOMA-IR, insulin and cardiac enzymes (LDH, CK-MB), cardiac histopathology, oxidative stress markers (MDA, GSH and CAT), myocardial fibrosis by Masson trichrome, the expression of p53, caspase-3, α-SMA and tyrosine hydroxylase (TH) by immunostaining in myocardial tissues were measured. Results: T2DM caused a significant increase in blood glucose, HOMA-IR index, serum CK-MB and LDH, myocardial damage and fibrosis, myocardial MDA, myocardial α-SMA, p53, caspase-3, Nrf2 and TH density with a significant decrease in serum insulin and myocardial GSH and CAT (p< 0.05). On the other hand, treatment with either exercise or stevia R extracts significantly improved all studied parameters (p< 0.05). Moreover, the effects of stevia R was more significant than exercise (p< 0.05). Conclusion: Both exercise and methanolic stevia R extracts showed cardioprotective effects against DCM and Stevia R offered more cardioprotective than exercise. This cardioprotective effect of these lines of treatment might be due to attenuation of oxidative stress, apoptosis, sympathetic nerve density and fibrosis and upregulation of the antioxidant transcription factor, Nrf2.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 557
Author(s):  
Stephanie D. Burr ◽  
James A. Stewart

Cardiovascular disease, specifically heart failure, is a common complication for individuals with type 2 diabetes mellitus. Heart failure can arise with stiffening of the left ventricle, which can be caused by “active” cardiac fibroblasts (i.e., myofibroblasts) remodeling the extracellular matrix (ECM). Differentiation of fibroblasts to myofibroblasts has been demonstrated to be an outcome of AGE/RAGE signaling. Hyperglycemia causes advanced glycated end products (AGEs) to accumulate within the body, and this process is greatly accelerated under chronic diabetic conditions. AGEs can bind and activate their receptor (RAGE) to trigger multiple downstream outcomes, such as altering ECM remodeling, inflammation, and oxidative stress. Previously, our lab has identified a small GTPase, Rap1a, that possibly overlaps the AGE/RAGE signaling cascade to affect the downstream outcomes. Rap1a acts as a molecular switch connecting extracellular signals to intracellular responses. Therefore, we hypothesized that Rap1a crosses the AGE/RAGE cascade to alter the expression of AGE/RAGE associated signaling proteins in cardiac fibroblasts in type 2 diabetic mice. To delineate this cascade, we used genetically different cardiac fibroblasts from non-diabetic, diabetic, non-diabetic RAGE knockout, diabetic RAGE knockout, and Rap1a knockout mice and treated them with pharmacological modifiers (exogenous AGEs, EPAC, Rap1a siRNA, and pseudosubstrate PKC-ζ). We examined changes in expression of proteins implicated as markers for myofibroblasts (α-SMA) and inflammation/oxidative stress (NF-κB and SOD-1). In addition, oxidative stress was also assessed by measuring hydrogen peroxide concentration. Our results indicated that Rap1a connects to the AGE/RAGE cascade to promote and maintain α-SMA expression in cardiac fibroblasts. Moreover, Rap1a, in conjunction with activation of the AGE/RAGE cascade, increased NF-κB expression as well as hydrogen peroxide concentration, indicating a possible oxidative stress response. Additionally, knocking down Rap1a expression resulted in an increase in SOD-1 expression suggesting that Rap1a can affect oxidative stress markers independently of the AGE/RAGE signaling cascade. These results demonstrated that Rap1a contributes to the myofibroblast population within the heart via AGE/RAGE signaling as well as promotes possible oxidative stress. This study offers a new potential therapeutic target that could possibly reduce the risk for developing diabetic cardiovascular complications attributed to AGE/RAGE signaling.


2004 ◽  
Vol 286 (3) ◽  
pp. E449-E455 ◽  
Author(s):  
Andrew N. Carley ◽  
Lisa M. Semeniuk ◽  
Yakhin Shimoni ◽  
Ellen Aasum ◽  
Terje S. Larsen ◽  
...  

Hearts from insulin-resistant type 2 diabetic db/db mice exhibit features of a diabetic cardiomyopathy with altered metabolism of exogenous substrates and reduced contractile performance. Therefore, the effect of chronic oral administration of 2-(2-(4-phenoxy-2-propylphenoxy)ethyl)indole-5-acetic acid (COOH), a novel ligand for peroxisome proliferator-activated receptor-γ that produces insulin sensitization, to db/db mice (30 mg/kg for 6 wk) on cardiac function was assessed. COOH treatment reduced blood glucose from 27 mM in untreated db/db mice to a normal level of 10 mM. Insulin-stimulated glucose uptake was enhanced in cardiomyocytes from COOH-treated db/db hearts. Working perfused hearts from COOH-treated db/db mice demonstrated metabolic changes with enhanced glucose oxidation and decreased palmitate oxidation. However, COOH treatment did not improve contractile performance assessed with ex vivo perfused hearts and in vivo by echocardiography. The reduced outward K+ currents in diabetic cardiomyocytes were still attenuated after COOH. Metabolic changes in COOH-treated db/db hearts are most likely indirect, secondary to changes in supply of exogenous substrates in vivo and insulin sensitization.


Sign in / Sign up

Export Citation Format

Share Document