scholarly journals Central SDF-1/CXCL12 expression and its cardiovascular and sympathetic effects: the role of angiotensin II, TNF-α, and MAP kinase signaling

2014 ◽  
Vol 307 (11) ◽  
pp. H1643-H1654 ◽  
Author(s):  
Shun-Guang Wei ◽  
Zhi-Hua Zhang ◽  
Yang Yu ◽  
Robert B. Felder

The chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) and its receptors are expressed by neurons and glial cells in cardiovascular autonomic regions of the brain, including the hypothalamic paraventricular nucleus (PVN), and contribute to neurohumoral excitation in rats with ischemia-induced heart failure. The present study examined factors regulating the expression of SDF-1 in the PVN and mechanisms mediating its sympatho-excitatory effects. In urethane anesthetized rats, a 4-h intracerebroventricular (ICV) infusion of angiotensin II (ANG II) or tumor necrosis factor-α (TNF-α) in doses that increase mean blood pressure (MBP) and sympathetic drive increased the expression of SDF-1 in PVN. ICV administration of SDF-1 increased the phosphorylation of p44/42 mitogen-activated protein kinase (MAPK), JNK, and p38 MAPK in PVN, along with MBP, heart rate (HR), and renal sympathetic nerve activity (RSNA), but did not affect total p44/42 MAPK, JNK, and p38 MAPK levels. ICV pretreatment with the selective p44/42 MAPK inhibitor PD98059 prevented the SDF-1-induced increases in MBP, HR, and RSNA; ICV pretreatment with the selective JNK and p38 MAPK inhibitors attenuated but did not block these SDF-1-induced excitatory responses. ICV PD98059 also prevented the sympatho-excitatory response to bilateral PVN microinjections of SDF-1. ICV pretreatment with SDF-1 short-hairpin RNA significantly reduced ANG II- and TNF-α-induced phosphorylation of p44/42 MAPK in PVN. These findings identify TNF-α and ANG II as drivers of SDF-1 expression in PVN and suggest that the full expression of their cardiovascular and sympathetic effects depends upon SDF-1-mediated activation of p44/42 MAPK signaling.

2019 ◽  
Vol 12 ◽  
pp. 117863611986459 ◽  
Author(s):  
Jessica Gräb ◽  
Jan Rybniker

The p38 mitogen-activated protein kinase (MAPK) is involved in a multitude of essential cellular processes. The kinase is activated in response to environmental stresses, including bacterial infections and inflammation, to regulate the immune response of the host. However, recent studies have demonstrated that pathogens can manipulate p38 MAPK signaling for their own benefit to either prevent or induce host cell apoptosis. In addition, there is evidence demonstrating that p38 MAPK is a potent trigger of pathogen-induced necrosis driven by mitochondrial membrane disruption. Given the large number of p38 MAPK inhibitors that have been tested in clinical trials, these findings provide an opportunity to repurpose these drugs for improved control of infectious diseases.


2015 ◽  
Vol 36 (6) ◽  
pp. 2237-2249 ◽  
Author(s):  
Sarah Fehr ◽  
Anke Unger ◽  
Elke Schaeffeler ◽  
Sonja Herrmann ◽  
Stefan Laufer ◽  
...  

Background/Aims: Inhibition of p38 mitogen-activated protein kinase (p38 MAPK) is promising for the treatment of inflammatory disorders, however, the efficacy of p38 MAPK inhibitors in clinical trials is limited so far. Since functional sensitivity of p38 MAPK is commonly predicted by preclinical species, we systematically investigated interspecies differences including human tissue. Methods: Ex vivo test models were established using whole blood and primary cells from different species such as mice, rats, pigs and humans to compare LPS-induced TNF-α inhibition of four different p38 MAPK reference inhibitors SB 203580, BIRB-796, Pamapimod, and a Losmapimod analogue as well as a proprietary imidazole-based p38 MAPK Inhibitor. Results: All analysed p38 MAPK inhibitors resulted in significant inhibition of LPS-induced TNF-α release but with high interspecies differences for dose sensitivity. IC50 values from human whole blood and PBMC showed significant higher sensitivity towards p38 MAPK inhibition compared with data from pig and rat. Conclusion: Inhibition of TNF-α release by p38 MAPK inhibitors can be reliably identified in well-established laboratory species such as rat or mouse. However, our data indicate that animal models appear to be limited for valid prediction of the inhibitory potential for TNF-α release in humans. Thus, human tissues should be considered early in the drug development process of p38 MAPK inhibitors.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Athanasios Mavropoulos ◽  
Timoklia Orfanidou ◽  
Christos Liaskos ◽  
Daniel S. Smyk ◽  
Vassiliki Spyrou ◽  
...  

p38 mitogen activated protein kinase (p38 MAPK) signaling plays a major role in the modulation of immune-mediated inflammatory responses and therefore has been linked with several autoimmune diseases. The extent of the involvement of p38 MAPK in the pathogenesis of autoimmune blistering diseases has started to emerge, but whether it pays a critical role is a matter of debate. The activity of p38 MAPK has been studied in great detail during the loss of keratinocyte cell-cell adhesions and the development of pemphigus vulgaris (PV) and pemphigus foliaceus (PF). These diseases are characterised by autoantibodies targeting desmogleins (Dsg). Whether autoantibody-antigen interactions can trigger signaling pathways (such as p38 MAPK) that are tightly linked to the secretion of inflammatory mediators which may perpetuate inflammation and tissue damage in pemphigus remains unclear. Yet, the ability of p38 MAPK inhibitors to block activation of the proapoptotic proteinase caspase-3 suggests that the induction of apoptosis may be a consequence of p38 MAPK activation during acantholysis in PV. This review discusses the current evidence for the role of p38 MAPK in the pathogenesis of pemphigus. We will also present data relating to the targeting of these cascades as a means of therapeutic intervention.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Andrzej P. Herman ◽  
Agata Krawczyńska ◽  
Joanna Bochenek ◽  
Hanna Antushevich ◽  
Anna Herman ◽  
...  

The study was designed to determine the effects of peripheral injection of SB203580 on the synthesis of interleukin- (IL-) 1β, IL-6, and tumor necrosis factor (TNF)αin the hypothalamus of ewes during prolonged inflammation. Inflammation was induced by the administration of lipopolysaccharide (LPS) (400 ng/kg) over 7 days. SB203580 is a selective ATP-competitive inhibitor of the p38 mitogen-activated protein kinase (MAPK), which is involved in the regulation of proinflammatory cytokines IL-1β, IL-6 and TNFαsynthesis. Intravenous injection of SB203580 successfully inhibited (P<0.01) synthesis of IL-1βand reduced (P<0.01) the production of IL-6 in the hypothalamus. The p38 MAPK inhibitor decreased (P<0.01) gene expression of TNFαbut its effect was not observed at the level of TNFαprotein synthesis. SB203580 also reduced (P<0.01) LPS-stimulated IL-1 receptor type 1 gene expression. The conclusion that inhibition of p38 MAPK blocks LPS-induced proinflammatory cytokine synthesis seems to initiate new perspectives in the treatment of chronic inflammatory diseases also within the central nervous system. However, potential proinflammatory effects of SB203580 treatment suggest that all therapies using p38 MAPK inhibitors should be introduced very carefully with analysis of all expected and unexpected consequences of treatment.


2020 ◽  
Vol 21 (8) ◽  
pp. 2773 ◽  
Author(s):  
Angelina Pranteda ◽  
Valentina Piastra ◽  
Lorenzo Stramucci ◽  
Deborah Fratantonio ◽  
Gianluca Bossi

Pharmacological treatment of colorectal carcinoma currently proceeds through the administration of a combination of different chemotherapeutic agents. In the case of rectal carcinoma, radiation therapy also represents a therapeutic strategy. In an attempt at translating much-needed new targeted therapy to the clinics, p38 mitogen activated protein kinase (MAPK) inhibitors have been tested in clinical trials involving colorectal carcinoma patients, especially in combination with chemotherapy; however, despite the high expectations raised by a clear involvement of the p38 MAPK pathway in the response to therapeutic treatments, poor results have been obtained so far. In this work, we review recent insights into the exact role of the p38 MAPK pathway in response to currently available therapies for colorectal carcinoma, depicting an intricate scenario in which the p38 MAPK node presents many opportunities, as well as many challenges, for its perspective exploitation for clinical purposes.


2005 ◽  
Vol 289 (6) ◽  
pp. L1039-L1048 ◽  
Author(s):  
Greg A. Knock ◽  
Anushika S. De Silva ◽  
Vladimir A. Snetkov ◽  
Richard Siow ◽  
Gavin D. Thomas ◽  
...  

The mechanisms through which p38 mitogen-activated protein kinase (p38 MAPK) is involved in smooth muscle contraction remain largely unresolved. We examined the role of p38 MAPK in prostaglandin F2α (PGF2α)-induced vasoconstriction and in hypoxic pulmonary vasoconstriction (HPV) of rat small intrapulmonary arteries (IPA). The p38 MAPK inhibitors SB-203580 and SB-202190 strongly inhibited PGF2α-induced vasoconstriction, with IC50s of 1.6 and 1.2 μM, whereas the inactive analog SB-202474 was ∼30-fold less potent. Both transient and sustained phases of HPV were suppressed by SB-203580, but not by SB-202474 (both 2 μM). Western blot analysis revealed that PGF2α (20 μM) increased phosphorylation of p38 MAPK and of heat shock protein 27 (HSP27), and this was abolished by SB-203580 but not by SB-202474 (both 2 μM). Endothelial denudation or blockade of endothelial nitric oxide (NO) synthase with Nω-nitro-l-arginine methyl ester (l-NAME) significantly suppressed the relaxation of PGF2α-constricted IPA by SB-203580, but not by SB-202474. Similarly, the inhibition of HPV by SB-203580 was prevented by prior treatment with l-NAME. SB-203580 (2 μM), but not SB-202474, enhanced relaxation-induced by the NO donor S-nitroso- N-acetylpenicillamine (SNAP) in endothelium-denuded IPA constricted with PGF2α. In α-toxin-permeabilized IPA, SB-203580-induced relaxation occurred in the presence but not the absence of the NO donor sodium nitroprusside (SNP); SB-202474 was without effect even in the presence of SNP. In intact IPA, neither PGF2α- nor SNAP-mediated changes in cytosolic free Ca2+ were affected by SB-203580. We conclude that p38 MAPK contributes to PGF2α- and hypoxia-induced constriction of rat IPA primarily by antagonizing the underlying Ca2+-desensitizing actions of NO.


2018 ◽  
Vol 115 (43) ◽  
pp. E10245-E10254 ◽  
Author(s):  
Matthew J. Robson ◽  
Meagan A. Quinlan ◽  
Kara Gross Margolis ◽  
Paula A. Gajewski-Kurdziel ◽  
Jeremy Veenstra-VanderWeele ◽  
...  

Autism spectrum disorder (ASD) is a common neurobehavioral disorder with limited treatment options. Activation of p38 MAPK signaling networks has been identified in ASD, and p38 MAPK signaling elevates serotonin (5-HT) transporter (SERT) activity, effects mimicked by multiple, hyperfunctional SERT coding variants identified in ASD subjects. Mice expressing the most common of these variants (SERT Ala56) exhibit hyperserotonemia, a biomarker observed in ASD subjects, as well as p38 MAPK-dependent SERT hyperphosphorylation, elevated hippocampal 5-HT clearance, hypersensitivity of CNS 5-HT1A and 5-HT2A/2C receptors, and behavioral and gastrointestinal perturbations reminiscent of ASD. As the α-isoform of p38 MAPK drives SERT activation, we tested the hypothesis that CNS-penetrant, α-isoform–specific p38 MAPK inhibitors might normalize SERT Ala56 phenotypes. Strikingly, 1-week treatment of adult SERT Ala56 mice with MW150, a selective p38α MAPK inhibitor, normalized hippocampal 5-HT clearance, CNS 5-HT1A and 5-HT2A/2C receptor sensitivities, social interactions, and colonic motility. Conditional elimination of p38α MAPK in 5-HT neurons of SERT Ala56 mice restored 5-HT1A and 5-HT2A/2C receptor sensitivities as well as social interactions, mirroring effects of MW150. Our findings support ongoing p38α MAPK activity as an important determinant of the physiological and behavioral perturbations of SERT Ala56 mice and, more broadly, supports consideration of p38α MAPK inhibition as a potential treatment for core and comorbid phenotypes present in ASD subjects.


2007 ◽  
Vol 31 (2) ◽  
pp. 343-351 ◽  
Author(s):  
Cindy Zer ◽  
George Sachs ◽  
Jai Moo Shin

Inhibition of p38 MAPK suppresses the expression of proinflammatory cytokines such as TNF-α and IL-1β in macrophages and fibroblast-like synoviocytes (FLS). However, there have been no genomewide studies on the gene targets of p38 MAPK signaling in synoviocytes. Microarray technology was applied to generate a comprehensive analysis of all genes regulated by the p38 MAPK signaling pathway in FLS. Gene expression levels were measured with Agilent oligonucleotide microarrays. Four independent sets of mRNA modulated by TNF-α and vehicle were used to measure the change of gene expression due to TNF-α, and three experiments were done to ascertain the effect of SB-203580, a p38 MAPK inhibitor, on TNF-α-induced genes. Microarray data were validated by RT-quantitative polymerase chain reaction. One hundred forty-one significantly expressed genes were more than twofold upregulated by TNF-α. Thirty percent of these genes were downregulated by the p38 inhibitor SB-203580, whereas 67% of these genes were not significantly changed. The SB-203580-inhibited genes include proinflammatory cytokines such as interleukins and chemokines, proteases including matrix metallopeptidases, metabolism-related genes such as cyclooxygenases and phosphodiesterase, genes involved in signal transduction, and genes encoding for transcription factors, receptors, and transporters. Approximately one-third of the TNF-α-induced genes in FLS are regulated by the p38 MAPK signal pathway, showing that p38 MAPK is a possible target for suppressing proinflammatory gene expressions in rheumatoid arthritis.


Sign in / Sign up

Export Citation Format

Share Document