scholarly journals Autoregulation and mechanotransduction control the arteriolar response to small changes in hematocrit

2012 ◽  
Vol 303 (9) ◽  
pp. H1096-H1106 ◽  
Author(s):  
Krishna Sriram ◽  
Beatriz Y. Salazar Vázquez ◽  
Amy G. Tsai ◽  
Pedro Cabrales ◽  
Marcos Intaglietta ◽  
...  

Here, we present an analytic model of arteriolar mechanics that accounts for key autoregulation mechanisms, including the myogenic response and the vasodilatory effects of nitric oxide (NO) in the vasculature. It couples the fluid mechanics of blood flow in arterioles with solid mechanics of the vessel wall and includes the effects of wall shear stress- and stretch-induced endothelial NO production. The model can be used to describe the regulation of blood flow and NO transport under small changes in hematocrit and to analyze the regulatory response of arterioles to small changes in hematocrit. Our analysis revealed that the experimentally observed paradoxical increase in cardiac output with small increases in hematocrit results from the combination of increased NO production and the effects of a strong myogenic response modulated by elevated levels of WSS. Our findings support the hypothesis that vascular resistance varies inversely with blood viscosity for small changes in hematocrit in a healthy circulation that responds to shear stress stimuli. They also suggest beneficial effects independent of changes in O2carrying capacity associated with the postsurgical transfusion of one or two units of blood.

2012 ◽  
Vol 303 (3) ◽  
pp. E301-E307 ◽  
Author(s):  
Glenn K. McConell ◽  
Stephen Rattigan ◽  
Robert S. Lee-Young ◽  
Glenn D. Wadley ◽  
Troy L. Merry

Nitric oxide (NO) is an important vasodilator and regulator in the cardiovascular system, and this link was the subject of a Nobel prize in 1998. However, NO also plays many other regulatory roles, including thrombosis, immune function, neural activity, and gastrointestinal function. Low concentrations of NO are thought to have important signaling effects. In contrast, high concentrations of NO can interact with reactive oxygen species, causing damage to cells and cellular components. A less-recognized site of NO production is within skeletal muscle, where small increases are thought to have beneficial effects such as regulating glucose uptake and possibly blood flow, but higher levels of production are thought to lead to deleterious effects such as an association with insulin resistance. This review will discuss the role of NO in skeletal muscle during and following exercise, including in mitochondrial biogenesis, muscle efficiency, and blood flow with a particular focus on its potential role in regulating skeletal muscle glucose uptake during exercise.


2016 ◽  
Vol 15 (2) ◽  
pp. 60-64
Author(s):  
N. Kh. Shadrina

Introduction and purpose. Vascular response to mechanical stimuli, namely transmural pressure (Bayliss effect) and wall shear stress (response to blood flow), play an important role in regulation of vascular tone. The purpose of the work was to study an influence of hypoxia on the vessel radius and blood flow control by response to shear stress. Methodology/approach. Mathematical simulation was used. The model is based on published data of experiments on small cerebral arteries of rats. The main assumptions of the model are: 1) the vessel is a thin wall cylinder; 2) the radius is controlled by two parameters: concentration of free calcium ions in the cytoplasm of the smooth muscle cells and concentration of nitric oxide (NO) in the smooth muscle layer; 3) the rate of NO production by endothelium is proportional to modulus of shear stress on the vessel wall. The apparent blood viscosity is calculated using the solution of the problem of two-layer flow. The numerical experiments were performed in Turbo Pascal. The main results and discussion. The dependence of vessel tone regulation by response to altered shear stress on oxygen tension is caused by dependence of NO synthesis in endothelium and NO consumption on oxygen concentration. As it follows from mathematical simulation, hypoxia reduces the role of mechanogenic regulation, and the increase of the wall sensitivity to NO makes this effect more appreciable. Calculations performed for typical value of cerebral vessel response to shear stress, show that the fall in oxygen tension from 100 to 30 per cent leads to decrease in diameter by 6 %, in blood flow rate by 11 %. The rheological factors prevent flow rate diminution, but their contribution is very small: less than 3 %. The fall in oxygen tension reduces NO production rate by endothelial cells and NO concentration in the vessel wall. At strong hypoxia (reduction in oxygen tension from 100 to 30 % and less) NO concentration in smooth muscle layer drops by more than 15 %. Conclusions. Hypoxia decreases NO-dependent vessel response to altered shear rate. This effect increases with the value of vessel response to shear stress. The rheological factors impede the decrease of this response.


2005 ◽  
Vol 289 (6) ◽  
pp. F1324-F1332 ◽  
Author(s):  
Manish M. Tiwari ◽  
Robert W. Brock ◽  
Judit K. Megyesi ◽  
Gur P. Kaushal ◽  
Philip R. Mayeux

Acute renal failure (ARF) is a frequent and serious complication of endotoxemia caused by lipopolysaccharide (LPS) and contributes significantly to mortality. The present studies were undertaken to examine the roles of nitric oxide (NO) and caspase activation on renal peritubular blood flow and apoptosis in a murine model of LPS-induced ARF. Male C57BL/6 mice treated with LPS ( Escherichia coli) at a dose of 10 mg/kg developed ARF at 18 h. Renal failure was associated with a significant decrease in peritubular capillary perfusion. Vessels with no flow increased from 7 ± 3% in the saline group to 30 ± 4% in the LPS group ( P < 0.01). Both the inducible NO synthase inhibitor l- N6-1-iminoethyl-lysine (l-NIL) and the nonselective caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone (Z-VAD) prevented renal failure and reversed perfusion deficits. Renal failure was also associated with an increase in renal caspase-3 activity and an increase in renal apoptosis. Both l-NIL and Z-VAD prevented these changes. LPS caused an increase in NO production that was blocked by l-NIL but not by Z-VAD. Taken together, these data suggest NO-mediated activation of renal caspases and the resulting disruption in peritubular blood flow are an important mechanism of LPS-induced ARF.


Author(s):  
Weiyu Li ◽  
Amy G. Tsai ◽  
Marcos Intaglietta ◽  
Daniel M. Tartakovsky

­­ ­Although some of the cardiovascular responses to changes in hematocrit (Hct) are not fully quantified experimentally, available information is sufficient to build a mathematical model of the consequences of treating anemia by introducing RBCs into the circulation via blood transfusion. We present such a model, which describes how the treatment of normovolemic anemia with blood transfusion impacts oxygen (O2) delivery (DO2, the product of blood O2 content and arterial blood flow) by the microcirculation. Our analysis accounts for the differential response of the endothelium to the wall shear stress (WSS) stimulus, changes in nitric oxide (NO) production due to modification of blood viscosity caused by alterations of both hematocrit (Hct) and cell free layer thickness, as well as for their combined effects on microvascular blood flow and DO2. Our model shows that transfusions of 1- and 2-unit of blood have a minimal effect on DO2 if the microcirculation is unresponsive to the WSS stimulus for NO production that causes vasodilatation increasing blood flow and DO2. Conversely, in a fully WSS responsive organism, blood transfusion significantly enhances blood flow and DO2, because increased viscosity stimulates endothelial NO production causing vasodilatation. This finding suggests that evaluation of a patients' pre-transfusion endothelial WSS responsiveness should be beneficial in determining the optimal transfusion requirements for treating anemic patients.


2000 ◽  
Vol 88 (4) ◽  
pp. 1381-1389 ◽  
Author(s):  
Ivan T. Demchenko ◽  
Albert E. Boso ◽  
Thomas J. O'Neill ◽  
Peter B. Bennett ◽  
Claude A. Piantadosi

We have tested the hypothesis that cerebral nitric oxide (NO) production is involved in hyperbaric O2 (HBO2) neurotoxicity. Regional cerebral blood flow (rCBF) and electroencephalogram (EEG) were measured in anesthetized rats during O2 exposure to 1, 3, 4, and 5 ATA with or without administration of the NO synthase inhibitor ( N ω-nitro-l-arginine methyl ester), l-arginine, NO donors, or the N-methyl-d-aspartate receptor inhibitor MK-801. After 30 min of O2 exposure at 3 and 4 ATA, rCBF decreased by 26–39% and by 37–43%, respectively, and was sustained for 75 min. At 5 ATA, rCBF decreased over 30 min in the substantia nigra by one-third but, thereafter, gradually returned to preexposure levels, preceding the onset of EEG spiking activity. Rats pretreated with N ω-nitro-l-arginine methyl ester and exposed to HBO2 at 5 ATA maintained a low rCBF. MK-801 did not alter the cerebrovascular responses to HBO2at 5 ATA but prevented the EEG spikes. NO donors increased rCBF in control rats but were ineffective during HBO2 exposures. The data provide evidence that relative lack of NO activity contributes to decreased rCBF under HBO2, but, as exposure time is prolonged, NO production increases and augments rCBF in anticipation of neuronal excitation.


2021 ◽  
Vol 22 (19) ◽  
pp. 10287
Author(s):  
Chih-Hsien Wu ◽  
Yi-Lin Chiu ◽  
Chung-Yueh Hsieh ◽  
Guo-Shiang Tsung ◽  
Lian-Shan Wu ◽  
...  

Cilostazol was suggested to be beneficial to retard in-stent atherosclerosis and prevent stent thrombosis. However, the mechanisms responsible for the beneficial effects of cilostazol are not fully understood. In this study, we attempted to verify the mechanism of the antithrombotic effect of cilostazol. Human umbilical vein endothelial cells (HUVECs) were cultured with various concentrations of cilostazol to verify its impact on endothelial cells. KLF2, silent information regulator transcript-1 (SIRT1), endothelial nitric oxide synthase (eNOS), and endothelial thrombomodulin (TM) expression levels were examined. We found cilostazol significantly activated KLF2 expression and KLF2-related endothelial function, including eNOS activation, Nitric oxide (NO) production, and TM secretion. The activation was regulated by SIRT1, which was also stimulated by cilostazol. These findings suggest that cilostazol may be capable of an antithrombotic and vasculoprotective effect in endothelial cells.


Author(s):  
Sarah Basehore ◽  
Samantha Bohlman ◽  
Callie Weber ◽  
Swathi Swaminathan ◽  
Yuji Zhang ◽  
...  

Rationale: In diabetic animals as well as high glucose cell culture conditions, endothelial nitric oxide synthase (eNOS) is heavily O-GlcNAcylated, which inhibits its phosphorylation and nitric oxide (NO) production. It is unknown, however, whether varied blood flow conditions, which affect eNOS phosphorylation, modulate eNOS activity via O-GlcNAcylation-dependent mechanisms. Objective: The goal of this study was to test if steady laminar flow, but not oscillating disturbed flow, decreases eNOS O-GlcNAcylation, thereby elevating eNOS phosphorylation and NO production. Methods and Results: Human umbilical vein endothelial cells (HUVEC) were exposed to either laminar flow (20 dynes/cm2 shear stress) or oscillating disturbed flow (4{plus minus}6 dynes/cm2 shear stress) for 24 hours in a cone-and-plate device. eNOS O-GlcNAcylation was almost completely abolished in cells exposed to steady laminar but not oscillating disturbed flow. Interestingly, there was no change in protein level or activity of key O-GlcNAcylation enzymes (OGT, OGA, or GFAT). Instead, metabolomics data suggest that steady laminar flow decreases glycolysis and hexosamine biosynthetic pathway (HBP) activity, thereby reducing UDP-GlcNAc pool size and consequent O-GlcNAcylation. Inhibition of glycolysis via 2-deoxy-2-glucose (2-DG) in cells exposed to disturbed flow efficiently decreased eNOS O-GlcNAcylation, thereby increasing eNOS phosphorylation and NO production. Finally, we detected significantly higher O-GlcNAcylated proteins in endothelium of the inner aortic arch in mice, suggesting that disturbed flow increases protein O-GlcNAcylation in vivo. Conclusions: Our data demonstrate that steady laminar but not oscillating disturbed flow decreases eNOS O-GlcNAcylation by limiting glycolysis and UDP-GlcNAc substrate availability, thus enhancing eNOS phosphorylation and NO production. This research shows for the first time that O-GlcNAcylation is regulated by mechanical stimuli, relates flow-induced glycolytic reductions to macrovascular disease, and highlights targeting HBP metabolic enzymes in endothelial cells as a novel therapeutic strategy to restore eNOS activity and prevent EC dysfunction in cardiovascular disease.


Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 984 ◽  
Author(s):  
Selom Avotri ◽  
Danita Eatman ◽  
Karen Russell-Randall

Purpose: Resveratrol (RSV), an antioxidant polyphenol, has demonstrated beneficial effects in various ocular diseases including glaucoma. Our study was designed to evaluate the effects of RSV on nitric oxide synthase (NOS) enzymes, nitric oxide (NO) and interleukin-1 alpha (IL-1 α), in human glaucomatous trabecular meshwork (TM) cells. Methods: Western blot was utilized to determine endothelial and inducible NOS (eNOS, iNOS) expression. The concentration-related effects of RSV on IL-1 α and NO levels were assessed using the respective ELISA kits. Results: Densitometry data showed concentration-related increases in eNOS, and reduction in iNOS expression at high RSV concentrations. RSV treatment (0.1, 1, 10 and 100 µM) resulted in increased NO levels (6 ± 0.7, 7 ± 0.8, 7.3 ± 0.7 and 9.5 ± 1 nM/mg protein, respectively). The average value obtained for control was 4.8 ± 0.6 nM/mg protein. Significant increases in IL-1α levels were observed with lower concentrations of RSV. However, at higher RSV concentrations (10–100 μM), IL-1 levels decreased. Conclusions: Resveratrol increased NO in glaucomatous TM cells, possibly by increasing eNOS expression. Thus, RSV-induced NO production supports the beneficial effects of this antioxidant in glaucoma. Furthermore, our results showing a reduction in iNOS, a contributor to oxidative stress expression, further support RSV’s antioxidant capabilities in vision.


2001 ◽  
Vol 281 (2) ◽  
pp. H796-H803 ◽  
Author(s):  
David W. Stepp ◽  
Daphne Merkus ◽  
Yasuhiro Nishikawa ◽  
William M. Chilian

Increases in shear stress promote coronary vasodilation by stimulating the production of nitric oxide (NO). Whether shear stress-induced NO production also limits vasoconstriction in the coronary microcirculation in vivo is unknown. Accordingly, we measured microvascular diameter and flow velocity in the beating heart along with estimated blood viscosity to calculate shear stress during vasoconstriction with endothelin or vasopressin. Measurements were repeated in the presence of N G-monomethyl-l-arginine (l-NMMA) to inhibit NO production and BQ-788 to block NO-linked endothelin type B receptors. BQ-788 did not augment steady-state constriction to endothelin, suggesting that NO production via activation of this receptor is inconsequential. l-NMMA potentiated constriction to both agonists, particularly in small arteries (inner diameter >120 μm). Shear stresses in small arteries were elevated during constriction and further elevated during constriction after l-NMMA. These observations suggest that NO production limits vasoconstriction in the coronary microcirculation and that the principal stimulus for this governance is elevated shear stress. The degree of shear stress moderation of constriction is heterogeneously distributed, with small arteries displaying a higher degree of shear stress regulation than arterioles. These results provide the strongest evidence to date that shear stress-mediated production of NO exerts a “braking” influence on constriction in the coronary microcirculation.


1997 ◽  
Vol 273 (5) ◽  
pp. G1160-G1167 ◽  
Author(s):  
Edward N. Janoff ◽  
Hiroshi Hayakawa ◽  
David N. Taylor ◽  
Claudine E. Fasching ◽  
Julie R. Kenner ◽  
...  

Vibrio cholerae induces massive intestinal fluid secretion that continues for the life of the stimulated epithelial cells. Enhanced regional blood flow and peristalsis are required to adapt to this obligatory intestinal secretory challenge. Nitric oxide (NO) is a multifunctional molecule that modulates blood flow and peristalsis and possesses both cytotoxic and antibacterial activity. We demonstrate that, compared with those in asymptomatic control subjects, levels of stable NO metabolites ([Formula: see text]/[Formula: see text]) are significantly increased in sera from acutely ill Peruvian patients with natural cholera infection as well as from symptomatic volunteers from the United States infected experimentally with V. cholerae. In a rabbit ileal loop model in vivo, cholera toxin (CT) elicited fluid secretion and dose-dependent increases in levels of[Formula: see text]/[Formula: see text]in the fluid ( P < 0.01). In contrast, lipopolysaccharide (LPS) elicited no such effects when applied to the intact mucosa. NO synthase (NOS) catalytic activity also increased in toxin-exposed tissues ( P< 0.05), predominantly in epithelial cells. The CT-induced NOS activity was Ca2+dependent and was not suppressed by dexamethasone. In conclusion, symptomatic V. cholerae infection induces NO production in humans. In the related animal model, CT, but not LPS, stimulated significant production of NO in association with increases in local Ca2+-dependent NOS activity in the tissues.


Sign in / Sign up

Export Citation Format

Share Document