Induction of matrix metalloproteinase-2 enhances systemic arterial contraction after hypoxia

2007 ◽  
Vol 292 (1) ◽  
pp. H684-H693 ◽  
Author(s):  
Jeff Z. He ◽  
Adrian Quan ◽  
Yi Xu ◽  
Hwee Teoh ◽  
Guilin Wang ◽  
...  

This study was carried out to determine the role of increased vascular matrix metalloproteinase-2 (MMP-2) expression in the changes in systemic arterial contraction after prolonged hypoxia. Rats and mice were exposed to hypoxia (10% and 8% O2, respectively) or normoxia (21% O2) for 16 h, 48 h, or 7 days. Aortae and mesenteric arteries were either mounted in organ bath myographs or frozen in liquid nitrogen. MMP-2 inhibition with cyclic CTTHWGFTLC (CTT) reduced contraction to phenylephrine (PE) in aortae and mesenteric arteries from rats exposed to hypoxia for 7 days but not in vessels from normoxic rats. Similarly, CTT reduced contraction to Big endothelin-1 (Big ET-1) in aortae from rats exposed to hypoxia for 7 days. Responses to PE were reduced in hypoxic MMP-2−/− mice compared with MMP-2+/+ mice. Increased contraction to Big ET-1 after hypoxia was observed in MMP-2+/+ mice but not in MMP-2−/− mice. Rat aortic MMP-2 and membrane type 1 (MT1)-MMP protein levels and MMP activity were increased after 7 days of hypoxia. Rat aortic MMP-2 and MT1-MMP mRNA levels were increased in the deep medial vascular smooth muscle. We conclude that hypoxic induction of MMP-2 expression potentiates contraction in systemic conduit and resistance arteries. This may preserve the capacity to regulate the systemic circulation in the transition between the alterations in vascular tone and structural remodeling that occurs during prolonged hypoxic epochs.

Sarcoma ◽  
2001 ◽  
Vol 5 (3) ◽  
pp. 143-149 ◽  
Author(s):  
Jan Åhlén ◽  
Ulla Enberg ◽  
Catharina Larsson ◽  
Olle Larsson ◽  
Tony Frisk ◽  
...  

Purpose:Extracellular matrix metalloproteinase inducer (EMMPRIN) has been shown to stimulate fibroblasts to production of matrix metalloproteinases (MMPs). MMPs comprise a family of proteolytic enzymes implicated in the degradation of extracellular matrix which has been proposed to be one of the essential steps in tumor invasion and metastases. In the present study we investigated the expression and location of mRNAs forEMMPRIN, matrix metalloproteinase-2 (MMP-2), and membrane-type 1 matrix metalloproteinase (MT1-MMP) in mesenchymal tumors with different tendencies to recur or metastasize.Subjects:Eight malignant fibrous histiocytomas (MFH), seven aggressive fibromatosis (AF), and six benign fibrous tumors (BF).Method:The mRNA-expression ofEMMPRIN,MMP-2andMT1-MMPwere studied using mRNAin situhybridization technique.Results:The mRNA-expression ofEMMPRIN,MMP-2andMT1-MMPrespectively were found at varying frequency and level in all tumor types. The mRNAs corresponding toEMMPRINandMMP-2were seen in neoplastic cells as well as in endothelial cells both inside and outside the tumor pseudo-capsule, whereasMT1-MMPwas seen only within the tumors. The estimated mRNA levels ofEMMPRINandMMP-2covariated significantly. Overall, the highest expression was found in the MFH tumors and the lowest levels in the BF tumors.Discussion:These findings suggest that the MMP-inducerEMMPRINand the extracellular matrix degrading system involving the metalloproteinasesMMP-2andMT1-MMPis frequently activated in mesenchymal tumors. The covariation betweenEMMPRINandMMP-2support previous findings that EMMPRIN may be an inducer of MMP-2. The high levels ofMMP-2mRNA in MFH indicate a relationship between the proteolytic activity ofMMP-2and the tumor aggressiveness.


2009 ◽  
Vol 78 (3) ◽  
pp. 1012-1021 ◽  
Author(s):  
Rosane M. B. Teles ◽  
Rose B. Teles ◽  
Thais P. Amadeu ◽  
Danielle F. Moura ◽  
Leila Mendonça-Lima ◽  
...  

ABSTRACT Gelatinases A and B (matrix metalloproteinase 2 [MMP-2] and MMP-9, respectively) can induce basal membrane breakdown and leukocyte migration, but their role in leprosy skin inflammation remains unclear. In this study, we analyzed clinical specimens from leprosy patients taken from stable, untreated skin lesions and during reactional episodes (reversal reaction [RR] and erythema nodosum leprosum [ENL]). The participation of MMPs in disease was suggested by (i) increased MMP mRNA expression levels in skin biopsy specimens correlating with the expression of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α), (ii) the detection of the MMP protein and enzymatic activity within the inflammatory infiltrate, (iii) increased MMP levels in patient sera, and (iv) the in vitro induction of MMP-9 by Mycobacterium leprae and/or TNF-α. It was observed that IFN-γ, TNF-α, MMP-2, and MMP-9 mRNA levels were higher in tuberculoid than lepromatous lesions. In contrast, interleukin-10 and tissue inhibitor of MMP (TIMP-1) message were not differentially modulated. These data correlated with the detection of the MMP protein evidenced by immunohistochemistry and confocal microscopy. When RR and ENL lesions were analyzed, an increase in TNF-α, MMP-2, and MMP-9, but not TIMP-1, mRNA levels was observed together with stronger MMP activity (zymography/in situ zymography). Moreover, following in vitro stimulation of peripheral blood cells, M. leprae induced the expression of MMP-9 (mRNA and protein) in cultured cells. Overall, the present data demonstrate an enhanced MMP/TIMP-1 ratio in the inflammatory states of leprosy and point to potential mechanisms for tissue damage. These results pave the way toward the application of new therapeutic interventions for leprosy reactions.


2019 ◽  
Vol 316 (1) ◽  
pp. C92-C103 ◽  
Author(s):  
Hojin Kang ◽  
Zhigang Hong ◽  
Ming Zhong ◽  
Jennifer Klomp ◽  
Kayla J. Bayless ◽  
...  

Angiogenesis is initiated in response to a variety of external cues, including mechanical and biochemical stimuli; however, the underlying signaling mechanisms remain unclear. Here, we investigated the proangiogenic role of the endothelial mechanosensor Piezo1. Genetic deletion and pharmacological inhibition of Piezo1 reduced endothelial sprouting and lumen formation induced by wall shear stress and proangiogenic mediator sphingosine 1-phosphate, whereas Piezo1 activation by selective Piezo1 activator Yoda1 enhanced sprouting angiogenesis. Similarly to wall shear stress, sphingosine 1-phosphate functioned by activating the Ca2+ gating function of Piezo1, which in turn signaled the activation of the matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase during sprouting angiogenesis. Studies in mice in which Piezo1 was conditionally deleted in endothelial cells demonstrated the requisite role of sphingosine 1-phosphate-dependent activation of Piezo1 in mediating angiogenesis in vivo. These results taken together suggest that both mechanical and biochemical stimuli trigger Piezo1-mediated Ca2+ influx and thereby activate matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase and synergistically facilitate sprouting angiogenesis.


2003 ◽  
Vol 285 (1) ◽  
pp. H127-H136 ◽  
Author(s):  
Scott Earley ◽  
Andrzej Pastuszyn ◽  
Benjimen R. Walker

The systemic vasculature exhibits attenuated vasoconstriction following chronic hypoxia (CH) that is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization. We hypothesized that increased production of arachidonic acid metabolites such as the cyclooxygenase product prostacyclin or cytochrome P-450 (CYP) epoxygenase-derived epoxyeicosatrienoic acids (EETs) contributes to VSM cell hyperpolarization following CH. VSM cell resting membrane potential ( Em) was measured in superior mesenteric artery strips isolated from rats with control barometric pressure (Pb, ≅630 Torr) and CH (Pb, 380 Torr for 48 h). VSM cell Em was normalized between groups following administration of the CYP inhibitors 17-octadecynoic acid and SKF-525A. VSM cell hyperpolarization after CH was not altered by cyclooxygenase inhibition, whereas the selective CYP2C9 inhibitor sulfaphenazole normalized VSM cell Em between groups. Iberiotoxin also normalized VSM cell Em, which suggests that large-conductance, Ca2+-activated K+ (BKCa) channel activity is increased after CH. Sulfaphenazole administration restored phenylephrine-induced and myogenic vasoconstriction and Ca2+ responses of mesenteric resistance arteries isolated from CH rats to control levels. Western blot experiments demonstrated that CYP2C9 protein levels were greater in mesenteric arteries from CH rats. In addition, 11,12-EET levels were elevated in endothelial cells from CH rats compared with controls. We conclude that enhanced CYP2C9 expression and 11,12-EET production following CH contributes to BKCa channel-dependent VSM cell hyperpolarization and attenuated vasoreactivity.


2007 ◽  
Vol 292 (4) ◽  
pp. H1847-H1860 ◽  
Author(s):  
Marina R. Bergman ◽  
John R. Teerlink ◽  
Rajeev Mahimkar ◽  
Luyi Li ◽  
Bo-Qing Zhu ◽  
...  

Although enhanced cardiac matrix metalloproteinase (MMP)-2 synthesis has been associated with ventricular remodeling and failure, whether MMP-2 expression is a direct mediator of this process is unknown. We generated transgenic mice expressing active MMP-2 driven by the α-myosin heavy chain promoter. At 4 mo MMP-2 transgenic hearts demonstrated expression of the MMP-2 transgene, myocyte hypertrophy, breakdown of Z-band registration, lysis of myofilaments, disruption of sarcomere and mitochondrial architecture, and cardiac fibroblast proliferation. Hearts from 8-mo-old transgenic mice displayed extensive myocyte disorganization and dropout with replacement fibrosis and perivascular fibrosis. Older transgenic mice also exhibited a massive increase in cardiac MMP-2 expression, representing recruitment of endogenous MMP-2 synthesis, with associated expression of MMP-9 and membrane type 1 MMP. Increases in diastolic [control (C) 33 ± 3 vs. MMP 51 ± 12 μl; P = 0.003] and systolic (C 7 ± 2 vs. MMP 28 ± 14 μl; P = 0.003) left ventricular (LV) volumes and relatively preserved stroke volume (C 26 ± 4 vs. MMP 23 ± 3 μl; P = 0.16) resulted in markedly decreased LV ejection fraction (C 78 ± 7% vs. MMP 48 ± 16%; P = 0.0006). Markedly impaired systolic function in the MMP transgenic mice was demonstrated in the reduced preload-adjusted maximal power (C 240 ± 84 vs. MMP 78 ± 49 mW/μl2; P = 0.0003) and decreased end-systolic pressure-volume relation (C 7.5 ± 1.5 vs. MMP 4.7 ± 2.0; P = 0.016). Expression of active MMP-2 is sufficient to induce severe ventricular remodeling and systolic dysfunction in the absence of superimposed injury.


Sign in / Sign up

Export Citation Format

Share Document