scholarly journals High Matrix Metalloproteinase Production Correlates with Immune Activation and Leukocyte Migration in Leprosy Reactional Lesions

2009 ◽  
Vol 78 (3) ◽  
pp. 1012-1021 ◽  
Author(s):  
Rosane M. B. Teles ◽  
Rose B. Teles ◽  
Thais P. Amadeu ◽  
Danielle F. Moura ◽  
Leila Mendonça-Lima ◽  
...  

ABSTRACT Gelatinases A and B (matrix metalloproteinase 2 [MMP-2] and MMP-9, respectively) can induce basal membrane breakdown and leukocyte migration, but their role in leprosy skin inflammation remains unclear. In this study, we analyzed clinical specimens from leprosy patients taken from stable, untreated skin lesions and during reactional episodes (reversal reaction [RR] and erythema nodosum leprosum [ENL]). The participation of MMPs in disease was suggested by (i) increased MMP mRNA expression levels in skin biopsy specimens correlating with the expression of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α), (ii) the detection of the MMP protein and enzymatic activity within the inflammatory infiltrate, (iii) increased MMP levels in patient sera, and (iv) the in vitro induction of MMP-9 by Mycobacterium leprae and/or TNF-α. It was observed that IFN-γ, TNF-α, MMP-2, and MMP-9 mRNA levels were higher in tuberculoid than lepromatous lesions. In contrast, interleukin-10 and tissue inhibitor of MMP (TIMP-1) message were not differentially modulated. These data correlated with the detection of the MMP protein evidenced by immunohistochemistry and confocal microscopy. When RR and ENL lesions were analyzed, an increase in TNF-α, MMP-2, and MMP-9, but not TIMP-1, mRNA levels was observed together with stronger MMP activity (zymography/in situ zymography). Moreover, following in vitro stimulation of peripheral blood cells, M. leprae induced the expression of MMP-9 (mRNA and protein) in cultured cells. Overall, the present data demonstrate an enhanced MMP/TIMP-1 ratio in the inflammatory states of leprosy and point to potential mechanisms for tissue damage. These results pave the way toward the application of new therapeutic interventions for leprosy reactions.

Rheumatology ◽  
2019 ◽  
Vol 59 (4) ◽  
pp. 742-753 ◽  
Author(s):  
Isabel Castro ◽  
Nicolás Albornoz ◽  
Sergio Aguilera ◽  
María-José Barrera ◽  
Sergio González ◽  
...  

Abstract Objectives Xerostomia in SS patients has been associated with low quality and quantity of salivary mucins, which are fundamental for the hydration and protection of the oral mucosa. The aim of this study was to evaluate if cytokines induce aberrant mucin expression and whether tauroursodeoxycholic acid (TUDCA) is able to counteract such an anomaly. Methods Labial salivary glands from 16 SS patients and 15 control subjects, as well as 3D acini or human submandibular gland cells stimulated with TNF-α or IFN-γ and co-incubated with TUDCA, were analysed. mRNA and protein levels of Mucin 1 (MUC1) and MUC7 were determined by RT-qPCR and western blot, respectively. Co-immunoprecipitation and immunofluorescence assays for mucins and GRP78 [an endoplasmic reticulum (ER)-resident protein] were also performed. mRNA levels of RelA/p65 (nuclear factor-κB subunit), TNF-α, IL-1β, IL-6, SEL1L and EDEM1 were determined by RT-qPCR, and RelA/p65 localization was evaluated by immunofluorescence. Results MUC1 is overexpressed and accumulated in the ER of labial salivary gland from SS patients, while MUC7 accumulates throughout the cytoplasm of acinar cells; however, MUC1, but not MUC7, co-precipitated with GRP78. TUDCA diminished the overexpression and aberrant accumulation of MUC1 induced by TNF-α and IFN-γ, as well as the nuclear translocation of RelA/p65, together with the expression of inflammatory and ER stress markers in 3D acini. Conclusion Chronic inflammation alters the secretory process of MUC1, inducing ER stress and affecting the quality of saliva in SS patients. TUDCA showed anti-inflammatory properties decreasing aberrant MUC1 accumulation. Further studies are necessary to evaluate the potential therapeutic effect of TUDCA in restoring glandular homeostasis in SS patients.


2007 ◽  
Vol 293 (6) ◽  
pp. C1916-C1923 ◽  
Author(s):  
Naoko Kanda ◽  
Shinichi Watanabe

The anti-microbial peptide human β-defensin-2 (hBD-2), produced by epidermal keratinocytes, plays pivotal roles in anti-microbial defense, inflammatory dermatoses, and wound repair. hBD-2 induces histamine release from mast cells. We examined the in vitro effects of histamine on hBD-2 production in normal human keratinocytes. Histamine enhanced TNF-α- or IFN-γ-induced hBD-2 secretion and mRNA expression. Histamine alone enhanced transcriptional activities of NF-κB and activator protein-1 (AP-1) and potentiated TNF-α-induced NF-κB and AP-1 activities or IFN-γ-induced NF-κB and STAT1 activities. Antisense oligonucleotides against NF-κB components p50 and p65, AP-1 components c-Jun and c-Fos, or H1 antagonist pyrilamine suppressed hBD-2 production induced by histamine plus TNF-α or IFN-γ. Antisense oligonucleotide against STAT1 only suppressed hBD-2 production induced by histamine plus IFN-γ. Histamine induced serine phosphorylation of inhibitory NF-κBα (IκBα) alone or together with TNF-α or IFN-γ. Histamine induced c-Fos mRNA expression alone or together with TNF-α, whereas it did not further increase c-Jun mRNA levels enhanced by TNF-α. Histamine induced serine phosphorylation of STAT1 alone or together with IFN-γ, whereas it did not further enhance IFN-γ-induced tyrosine phosphorylation of STAT1. The histamine-induced serine phosphorylation of STAT1 was suppressed by MAPKK (MEK) inhibitor PD98059. These results suggest that histamine stimulates H1 receptor and potentiates TNF-α- or IFN-γ-induced hBD-2 production dependent on NF-κB, AP-1, or STAT1 in human keratinocytes. Histamine may potentiate anti-microbial defense, skin inflammation, and wound repair via the induction of hBD-2.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A712-A712
Author(s):  
Randy Tsai ◽  
Hannah Fields ◽  
Xinlian Zhang ◽  
Valentina Ferrari ◽  
Soo Park ◽  
...  

BackgroundMyelodysplastic syndromes (MDS) are the most common acquired cause of bone marrow failure. Though DNA hypomethylating agents (HMAs) such as 5-Azacitidine (5-Aza) may increase survival of patients with higher-risk MDS, their mechanistic effects on hematopoiesis and immune cell function remain unclear. Using whole exome sequencing analysis, we previously identified MDS-related mutations within monocyte-derived dendritic cells (moDCs) from patients with higher-risk MDS. Here we examine the effect of 5-Aza on the phenotype of moDCs from the same cohort of patients with higher-risk MDS.MethodsPurified CD14+ cells were magnetically isolated from peripheral blood mononuclear cells from 6 patients with IPSS-R Intermediate/High/Very High-risk MDS (herein collectively referred to as higher-risk MDS). Cells were cultured in complete medium with IL-4 (800 U/mL) and GM-CSF (1200 U/mL) for 5 days. Freshly prepared 5-Aza or dimethylsulfoxide (DMSO) vehicle was added to cultures every 24 hours for a total of three 1 μM doses starting on Day 1. Immature moDCs were then stimulated with poly(I:C) (20 ng/mL), IL-1β (25 ng/mL), IFN-α (3000 U/mL), IFN-γ (1000 U/mL), and TNF-α (50 ng/mL) for 48 hours to generate moDCs. Flow cytometry analyses were performed with Guava easyCyte 8HT before and after addition of maturation cocktail.ResultsBased on trypan blue staining, in vitro addition of 5-Aza to CD14+ cells from 6 patients with higher-risk MDS did not result in a significant reduction in the percentage of cell survival on Day 5 and Day 7 in culture (figure 1a, p=0.8765 and p=0.7109, respectively). Treatment with 5-Aza significantly reduced the percentage of CD14-CD209+ moDCs on Day 7 following the addition of maturation cocktail (figure 1b, p<0.0001). Flow cytometry assessment showed comparable expression of common maturation and co-stimulatory markers such as CD80, CD83, CD86, HLA-DR, CD209, CD141, CD40, and CCR7 between 5-Aza and DMSO-treated immature moDCs on Day 5 (figure 1c). Similarly, 5-Aza treatment had no significant effect on marker expression on mature moDCs generated with maturation cocktail on Day 7.ConclusionsThere was no significant difference in maturation and co-stimulatory marker expression of immature and mature moDCs from patients with higher-risk MDS following in vitro treatment with 5-Aza. Though recent studies have identified important immunoregulatory effects of 5-Aza, functional changes that may occur within the dendritic cell population are not fully understood. Further studies are planned, including cytokine analyses and transcriptome sequencing of mature moDCs, and may help elucidate the immunological mechanisms underlying the therapeutic effects of 5-Aza in patients with higher-risk MDS.Ethics ApprovalThe study is being conducted as per the Declaration of Helsinki and was approved by the University of California San Diego Institutional Review Board (#161345) and registered with ClinicalTrials.gov (NCT02667093). All patients were provided written informed consent.Abstract 684 Figure 15-Aza and DMSO vehicle-treated moDCs from patients with higher-risk MDS were evaluated for phenotypic markers before and after stimulation with maturation cocktail. Purified CD14+ cells were magnetically isolated from PBMC from 6 higher-risk MDS patients and cultured with IL-4 and GM-CSF for 5 days followed by addition of poly(I:C), IL-1β, IFN-α, IFN-γ, and TNF-α for 48 hours at 37°C in a 5% CO2 incubator. Freshly prepared 5-Aza or DMSO vehicle was added to cultures every 24 hours for a total of three 1 μM doses starting on Day 1. (A) Cultured cells were stained with trypan blue to determine the percentage of cell survival on Day 5 and Day 7 in culture. (B) Treatment with 5-Aza significantly reduced the percentage of CD14-CD209+ moDCs on Day 7 following addition of maturation cocktail (p<0.0001). (C) The percentage of CD14-CD83+ cells is comparable between 5-Aza and vehicle-treated immature moDCs on Day 5 and mature moDCs on Day 7 (p=0.2434 and p=0.5846, respectively). (D) Cultured cells were stained with fluorochrome-conjugated antibodies to determine the expression of common maturation and co-stimulatory markers using flow cytometry. Cells were gated on CD14-CD11c+ to distinguish moDCs, and scatterplots represent the geometric mean fluorescence intensity (gMFI) of marker expression pre- and post-maturation. Individual dots represent one of three experimental replicates performed for the 6 higher-risk MDS patient samples. Each dot is labeled by MDS patient sample. Statistical analysis was performed by Welch's t-test using GraphPad Prism.


2014 ◽  
Vol 307 (7) ◽  
pp. G673-G688 ◽  
Author(s):  
Kacper A. Wojtal ◽  
Alexandra Cee ◽  
Silvia Lang ◽  
Oliver Götze ◽  
Heiko Frühauf ◽  
...  

Solute carrier (SLC) transporters mediate the uptake of biologically active compounds in the intestine. Reduced oxygenation (hypoxia) is an important factor influencing intestinal homeostasis. The aim of this study was to investigate the pathophysiological consequences of hypoxia on the expression and function of SLCs in human intestine. Hypoxia was induced in human intestinal epithelial cells (IECs) in vitro (0.2; 1% O2 or CoCl2). For human in vivo studies, duodenal biopsies and serum samples were obtained from individuals ( n = 16) acutely exposed to 4,554 meters above sea levels. Expression of relevant targets was analyzed by quantitative PCR, Western blotting, or immunofluorescence. Serum levels of inflammatory mediators and nucleosides were determined by ELISA and LC/MS-MS, respectively. In the duodenum of volunteers exposed to high altitude we observed decreased mRNA levels of apical sodium-dependent bile acid transporter (ASBT), concentrative nucleoside transporters 1/2 (CNT1/2), organic anion transporting polypeptide 2B1 (OATP2B1), organic cation transporter 2 (OCTN2), peptide transporter 1 (PEPT1), serotonin transporter (SERT), and higher levels of IFN-γ, IL-6, and IL-17A. Serum levels of IL-10, IFN-γ, matrix metalloproteinase-2 (MMP-2), and serotonin were elevated, whereas the levels of uridine decreased upon exposure to hypoxia. Hypoxic IECs showed reduced levels of equilibrative nucleoside transporter 2 (ENT2), OCTN2, and SERT mRNAs in vitro, which was confirmed on the protein level and was accompanied by activation of ERK1/2, increase of hypoxia-inducible factor (HIF) proteins, and production of IL-8 mRNA. Costimulation with IFN-γ and IL-6 during hypoxia further decreased the expression of SERT, ENT2, and CNT2 in vitro. Reduced oxygen supply affects the expression pattern of duodenal SLCs that is accompanied by changes in serum levels of proinflammatory cytokines and biologically active compounds demonstrating that intestinal transport is affected during systemic exposure to hypoxia in humans.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yi Cheng ◽  
Lu Liu ◽  
Simei Mo ◽  
Jianxiong Gao ◽  
Hongjian Zhang ◽  
...  

Cyclophosphamide is a commonly used anticancer drug, and immunosuppression is one of the most common side effects. How to recover the immunological function is important for cyclophosphamide-treated patients. In the present study, Phellodendri Cortex polysaccharides (CPP) could enhance the proliferation of mouse spleen lymphocytes in vitro. The immunoregulatory function of CPP was then investigated in cyclophosphamide-induced immunosuppressed mice. In CPP-treated groups, mice were orally treated with CPP at doses of 1, 0.5, and 0.25 g/kg bodyweight from 1 to 11 d, respectively. The cyclophosphamide was administrated in CPP and cyclophosphamide groups from 12 to 14 d. In the cyclophosphamide and normal control groups, the mice received equal volume of saline from 1 to 14 d. The results showed that CPP (1 g/kg) could significantly increase the bodyweight of mice, even during cyclophosphamide treatment. The organ coefficients of the spleen and thymus were recovered by CPP treatment. CPP upregulated the contents of cytokines (IL-2, IL-6, IFN-γ, and TNF-α) in serum, which were downregulated by cyclophosphamide. The mRNA levels of these cytokines were also elevated by CPP treatment in the spleen. Cyclophosphamide upregulated the expressions of NF-κB p65, TLR4, and MyD88, suggesting that the NF-κB signaling pathway was activated by cyclophosphamide. After CPP treatment, it was recovered to normal level. These results indicated that CPP alleviated the cyclophosphamide-induced immunosuppression.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 868
Author(s):  
Fabiana Albani Zambuzi ◽  
Priscilla Mariane Cardoso-Silva ◽  
Ricardo Cardoso Castro ◽  
Caroline Fontanari ◽  
Flavio da Silva Emery ◽  
...  

Decitabine is an approved hypomethylating agent used for treating hematological malignancies. Although decitabine targets altered cells, epidrugs can trigger immunomodulatory effects, reinforcing the hypothesis of immunoregulation in treated patients. We therefore aimed to evaluate the impact of decitabine treatment on the phenotype and functions of monocytes and macrophages, which are pivotal cells of the innate immunity system. In vitro decitabine administration increased bacterial phagocytosis and IL-8 release, but impaired microbicidal activity of monocytes. In addition, during monocyte-to-macrophage differentiation, treatment promoted the M2-like profile, with increased expression of CD206 and ALOX15. Macrophages also demonstrated reduced infection control when exposed to Mycobacterium tuberculosis in vitro. However, cytokine production remained unchanged, indicating an atypical M2 macrophage. Furthermore, when macrophages were cocultured with lymphocytes, decitabine induced a reduction in the release of inflammatory cytokines such as IL-1β, TNF-α, and IFN-γ, maintaining IL-10 production, suggesting that decitabine could potentialize M2 polarization and might be considered as a therapeutic against the exacerbated immune response.


2021 ◽  
Vol 22 (5) ◽  
pp. 2334
Author(s):  
Jae Ho Choi ◽  
Gi Ho Lee ◽  
Sun Woo Jin ◽  
Ji Yeon Kim ◽  
Yong Pil Hwang ◽  
...  

Impressic acid (IPA), a lupane-type triterpenoid from Acanthopanax koreanum, has many pharmacological activities, including the attenuation of vascular endothelium dysfunction, cartilage destruction, and inflammatory diseases, but its influence on atopic dermatitis (AD)-like skin lesions is unknown. Therefore, we investigated the suppressive effect of IPA on 2,4-dinitrochlorobenzene (DNCB)-induced AD-like skin symptoms in mice and the underlying mechanisms in cells. IPA attenuated the DNCB-induced increase in the serum concentrations of IgE and thymic stromal lymphopoietin (TSLP), and in the mRNA levels of thymus and activation regulated chemokine(TARC), macrophage derived chemokine (MDC), interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-13 (IL-13), tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) in mice. Histopathological analysis showed that IPA reduced the epidermal/dermal thickness and inflammatory and mast cell infiltration of ear tissue. In addition, IPA attenuated the phosphorylation of NF-κB and IκBα, and the degradation of IκBα in ear lesions. Furthermore, IPA treatment suppressed TNF-α/IFN-γ-induced TARC expression by inhibiting the NF-κB activation in cells. Phosphorylation of extracellular signalregulated protein kinase (ERK1/2) and the signal transducer and activator of transcription 1 (STAT1), the upstream signaling proteins, was reduced by IPA treatment in HaCaT cells. In conclusion, IPA ameliorated AD-like skin symptoms by regulating cytokine and chemokine production and so has therapeutic potential for AD-like skin lesions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haidy A. Saleh ◽  
Eman Ramdan ◽  
Mohey M. Elmazar ◽  
Hassan M. E. Azzazy ◽  
Anwar Abdelnaser

AbstractDoxorubicin (DOX) chemotherapy is associated with the release of inflammatory cytokines from macrophages. This has been suggested to be, in part, due to DOX-mediated leakage of endotoxins from gut microflora, which activate Toll-like receptor 4 (TLR4) signaling in macrophages, causing severe inflammation. However, the direct function of DOX on macrophages is still unknown. In the present study, we tested the hypothesis that DOX alone is incapable of stimulating inflammatory response in macrophages. Then, we compared the anti-inflammatory effects of curcumin (CUR), resveratrol (RES) and sulforaphane (SFN) against lipopolysaccharide/interferon-gamma (LPS/IFN-γ)-mediated inflammation in the absence or presence of DOX. For this purpose, RAW 264.7 cells were stimulated with LPS/IFN-γ (10 ng/mL/10 U/mL) in the absence or presence of DOX (0.1 µM). Our results showed that DOX alone is incapable of stimulating an inflammatory response in RAW 264.7 macrophages. Furthermore, after 24 h of incubation with LPS/IFN-γ, a significant increase in tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) mRNA levels was observed. Similarly, nitric oxide (NO) production and TNF-α and IL-6 protein levels were significantly upregulated. Moreover, in LPS/IFN-γ-treated macrophages, the microRNAs (miRNAs) miR-146a, miR-155, and miR-21 were significantly overexpressed. Interestingly, upon testing CUR, RES, and SFN against LPS/IFN-γ-mediated inflammation, only SFN was able to significantly reverse the LPS/IFN-γ-mediated induction of iNOS, TNF-α and IL-6 and attenuate miR-146a and miR-155 levels. In conclusion, SFN, at the transcriptional and posttranscriptional levels, exhibits potent immunomodulatory action against LPS/IFN-γ-stimulated macrophages, which may indicate SFN as a potential treatment for DOX-associated inflammation.


Endocrine ◽  
2021 ◽  
Author(s):  
Francesca Coperchini ◽  
Gianluca Ricci ◽  
Laura Croce ◽  
Marco Denegri ◽  
Rubina Ruggiero ◽  
...  

Abstract Introduction Angiotensin-converting-enzyme-2 (ACE-2) was demonstrated to be the receptor for cellular entry of SARS-CoV-2. ACE-2 mRNA was identified in several human tissues and recently also in thyroid cells in vitro. Purpose Aim of the present study was to investigate the effect of pro-inflammatory cytokines on the ACE-2 mRNA levels in human thyroid cells in primary cultures. Methods Primary thyroid cell cultures were treated with IFN-γ and TNF-α alone or in combination for 24 h. ACE-2 mRNA levels were measured by RT-PCR. As a control, the levels of IFN-γ inducible chemokine (CXCL10) were measured in the respective cell culture supernatants. Results The mean levels of ACE-2 mRNA increased after treatment with IFN-γ and TNF-α in all the thyroid cell preparations, while the combination treatment did not consistently synergically increase ACE-2-mRNA. At difference, CXCL10 was consistently increased by IFN-γ and synergically further increased by the combination treatment with IFN-γ + TNF-α, with respect to IFN-γ alone. Conclusions The results of the present study show that IFN-γ and, to a lesser extent TNF-α consistently increase ACE-2 mRNA levels in NHT primary cultures. More interestingly, the combined stimulation (proven to be effective according to the synergic effect registered for CXCL10) produces different responses in terms of ACE-2 mRNA modulation. These results would suggest that elevated levels of pro-inflammatory cytokines could facilitate the entering of the virus in cells by further increasing ACE-2 expression and/or account for the different degree of severity of SARS-COV-2 infection. This hypothesis deserves to be confirmed by further specific studies.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 965
Author(s):  
Grazia Maugeri ◽  
Agata Grazia D’Amico ◽  
Salvatore Saccone ◽  
Concetta Federico ◽  
Daniela Maria Rasà ◽  
...  

Pituitary adenylate cyclase-activating polypeptide (PACAP) exerts different effects in various human cancer. In glioblastoma (GBM), PACAP has been shown to interfere with the hypoxic micro-environment through the modulation of hypoxia-inducible factors via PI3K/AKT and MAPK/ERK pathways inhibition. Considering that hypoxic tumor micro-environment is strictly linked to angiogenesis and Epithelial–Mesenchymal transition (EMT), in the present study, we have investigated the ability of PACAP to regulate these events. Results have demonstrated that PACAP and its related receptor, PAC1R, are expressed in hypoxic area of human GBM colocalizing either in epithelial or mesenchymal cells. By using an in vitro model of GBM cells, we have observed that PACAP interferes with hypoxic/angiogenic pathway by reducing vascular-endothelial growth factor (VEGF) release and inhibiting formation of vessel-like structures in H5V endothelial cells cultured with GBM-conditioned medium. Moreover, PACAP treatment decreased the expression of mesenchymal markers such as vimentin, matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) as well as CD44 in GBM cells by affecting their invasiveness. In conclusion, our study provides new insights regarding the multimodal role of PACAP in GBM malignancy.


Sign in / Sign up

Export Citation Format

Share Document