scholarly journals Reversal of hemoglobin-induced vasoconstriction with sustained release of nitric oxide

2011 ◽  
Vol 300 (1) ◽  
pp. H49-H56 ◽  
Author(s):  
Pedro Cabrales ◽  
George Han ◽  
Parimala Nacharaju ◽  
Adam J. Friedman ◽  
Joel M. Friedman

Erythrocyte free hemoglobin (Hb) induces vasoconstriction due to nitric oxide (NO) scavenging, limiting the NO available for vascular smooth muscle. The central objective of this study was to restore NO bioavailability using long-lived circulating NO-releasing nanoparticles (NO-np) to reverse the vasoconstriction and hypertension induced by polymerized bovine Hb (PBH) NO scavenging. PBH (13 g/dl) was infused in a volume equal to 10% of the animal blood volume. Intravascular NO supplementation was provided with an infusion of NO-np (10 and 20 mg/kg body wt). This study was performed using the hamster window chamber model to concurrently access systemic and microvascular hemodynamics. Infusion of PBH increased blood pressure and induced vasoconstriction. Treatment with 10 and 20 mg/kg NO-np reduced the blood pressure and vasoconstriction induced by PBH. Moreover, the higher dose of NO-np decreased blood pressure and induced vasodilation compared with baseline, respectively. Treatment with NO-np to decrease PBH-induced vasoconstriction increased methemoglobin levels and plasma nitrite and nitrate. In conclusion, NO-np counteracted both systemic hypertension and decreased the vasoconstrictor effects of PBH infusion, improving systemic and microvascular function. Based on the observed physiological properties, NO-np has clear potential as a therapeutic agent to replenish NO in situations where NO production is impaired, insufficient, or consumed, thereby preventing vascular complications.

1996 ◽  
Vol 7 (12) ◽  
pp. 2694-2699
Author(s):  
M C Ortíz ◽  
L A Fortepiani ◽  
C Martínez ◽  
N M Atucha ◽  
J García-Estañ

Recent work indicates that nitric oxide (NO) plays an important role in the systemic and renal alterations of liver cirrhosis. This study used aminoguanidine (AG), a preferential inhibitor of inducible nitric oxide synthase (iNOS), to evaluate the role of this NOS isoform in the systemic and renal alterations of an experimental model of liver cirrhosis with ascites (carbon tetrachloride/ phenobarbital). Experiments have been performed in anesthetized cirrhotic rats and their respective control rats prepared for clearance studies. Administration of AG (10 to 100 mg/kg, iv) elevated dose-dependent mean arterial pressure (MAP, in mm Hg) in the cirrhotic rats from a basal level of 79.3 +/- 3.6 to 115.0 +/- 4.7, whereas in the control animals, MAP increased only with the highest dose of the inhibitor (from 121.8 +/- 3.6 to 133.3 +/- 1.4). In the cirrhotic group, AG also significantly increased sodium and water excretion, whereas these effects were very modest in the control group. Plasma concentration of nitrates+nitrites, measured as an index of NO production, were significantly increased in the cirrhotic animals in the basal period and decreased with AG to levels not significantly different from the control animals. Similar experiments performed with the nonspecific NOS inhibitor N omega-nitro-L-arginine (NNA) also demonstrated an increased pressor sensitivity of the cirrhotic rats, but the arterial hypotension was completely corrected. These results, in an experimental model of liver cirrhosis with ascites, show that AG exerts a beneficial effect as a result of inhibition of NO production, increasing blood pressure and improving the reduced excretory function. Because NNA, but not AG, completely normalized the arterial hypotension, it is suggested that the constitutive NOS isoform is also contributing in an important degree. It is concluded that the activation of both inducible and constitutive NOS isoforms plays an important role in the lower systemic blood pressure and associated abnormalities that characterize liver cirrhosis.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Maria Peleli ◽  
Christa Zollbrecht ◽  
Marcelo Montenegro ◽  
Michael Hezel ◽  
Eddie Weitzberg ◽  
...  

Xanthine oxidoreductase (XOR) is generally known as a source of superoxide production, but this enzyme has also been suggested to mediate NO production via reduction of inorganic nitrate (NO 3 - ) and nitrite(NO 2 - ). This pathway for NO generation is of particular importance during certain pathologies, whereas endothelial NO synthase (eNOS) is the primary source of vascular NO generation under normal physiological conditions. The exact interplay between the NOS and XOR-derived NO is not yet fully elucidated. The aim of the present study was to investigate if eNOS deficiency is partly compensated by XOR upregulation and sensitization of the NO 3 - - NO 2 - - NO pathway. NO 3 - and NO 2 - were similar between naïve eNOS KO and wildtype (wt) mice, but reduced upon chronic treatment with the non-selective NOS inhibitor L-NAME (wt: 25.0±5.2, eNOS KO: 39.2±6.4, L-NAME: 8.2±1.6 μ NO 3 - -, wt: 0.38±0.07, eNOS KO: 0.42±0.04, L-NAME: 0.12±0.02 μ NO 2 - ). XOR function was upregulated in eNOS KO compared with wt mice [(mRNA: wt 1±0.07, eNOS KO 1.38±0.17), (activity: wt 825±54, eNOS KO 1327±280 CLU/mg/min), (uric acid: wt 32.87±1.53, eNOS KO 43.23±3.54 μ)]. None of these markers of XOR activity was increased in nNOS KO and iNOS KO mice. Following acute dose of NO 3 - (10 mg/kg bw, i.p.), the increase of plasma NO 2 - was more pronounced in eNOS KO (+0.51±0.13 μ) compared with wt (+0.22±0.09 μ), and this augmented response in the eNOS KO was abolished by treatment with the highly selective XOR inhibitor febuxostat (FEB). Liver from eNOS KO had higher reducing capacity of NO 2 - to NO compared with wt, and this effect was attenuated by FEB (Δppb of NO: wt +8.7±4.2, eNOS KO +44.2±15.0, wt+FEB +22.2±9.6, eNOS KO+FEB +26.8±10.2). Treatment with FEB increased blood pressure in eNOS KO (ΔMAP:+10.2±5.6 mmHg), but had no effect in wt (ΔMAP:-0.6±3.3 mmHg). Supplementation with NO 3 - (10 mM, drinking water) reduced blood pressure in eNOS KO (ΔMAP: -6.3±2.2 mmHg), and this effect was abolished by FEB (ΔMAP: +1.1±1.9 mmHg). In conclusion, upregulated and altered XOR function in conditions with eNOS deficiency can facilitate the NO 3 - - NO 2 - - NO pathway and hence play a significant role in vascular NO homeostasis.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Lucas C Pinheiro ◽  
Jefferson H Amaral ◽  
Carla S Ceron ◽  
Graziele Ferreira ◽  
Jose E Tanus-Santos

Introduction: Recent studies showed that sodium nitrite decreases blood pressure (BP) in two kidney, one clip (2K1C) hypertension, probably as a result of nitrite being converted into nitric oxide in the acid environment of the stomach. This study aimed at examining whether increasing gastric pH with omeprazol reduces the chronic antihypertensive effects of nitrite. Methods: 2K1C hypertensive and sham operated control rats were treated with omeprazole (10mg/Kg; i.p.) or vehicle and sodium nitrite (15mg/Kg; gavage) or saline for two weeks. Systolic BP (SBP) was measured by tail pletismografy weekly. Circulating nitrite levels were measured by chemiluminesce and gastric pH was measured with an electrode. The results were analyzed by two-way ANOVA. The results are show as mean ± standard deviation. Results: 2K1C rats were hypertensive two weeks after surgery (SBP=180±17 mmHg). After 4 weeks of treatment, nitrite exerted antihypertensive effects in rats treated with vehicle (SBP=161±23 mmHg versus 200±29 mmHg, respectively, in the 2K1C+nitrite and in the 2K1C+saline groups; P<0.05). However, nitrite exerted no antihypertensive effects in 2K1C rats treated with omeprazole (SBP=200±34 mmHg; P>0.05 versus 2K1C+saline group). We found no significant differences among the sham operated groups. Similar increases in plasma nitrite concentrations were found when animals treated with nitrite and omeprazol were compared with those treated with nitrite and vehicle (8.5±4.1 versus 5.2±3.6 μM, respectively; P>0.05). Omeprazole increased gastric pH in all animals treated with this drug (P<0.05). Conclusion Treatment with omeprazole blunts the chronic antihypertensive effects of sodium nitrite in 2K1C rats. However, this effect is probably not associated with significant differences in plasma nitrite concentrations.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1679 ◽  
Author(s):  
David Khalaf ◽  
Marcus Krüger ◽  
Markus Wehland ◽  
Manfred Infanger ◽  
Daniela Grimm

Nitric oxide (NO) is a well-known vasodilator produced by the vascular endothelium via the enzyme endothelial nitric oxide synthase (eNOS). The inadequate production of NO has been linked to elevated blood pressure (BP) in both human and animal studies, and might be due to substrate inaccessibility. This review aimed to investigate whether oral administration of the amino acids l-arginine (Arg) and l-citrulline (Cit), which are potential substrates for eNOS, could effectively reduce BP by increasing NO production. Both Arg and Cit are effective at increasing plasma Arg. Cit is approximately twice as potent, which is most likely due to a lower first-pass metabolism. The current data suggest that oral Arg supplementation can lower BP by 5.39/2.66 mmHg, which is an effect that is comparable with diet changes and exercise implementation. The antihypertensive properties of Cit are more questionable, but are likely in the range of 4.1/2.08 to 7.54/3.77 mmHg. The exact mechanism by which Cit and Arg exert their effect is not fully understood, as normal plasma Arg concentration greatly exceeds the Michaelis constant (Km) of eNOS. Thus, elevated plasma Arg concentrations would not be expected to increase endogenous NO production significantly, but have nonetheless been observed in other studies. This phenomenon is known as the “l-arginine paradox”.


2018 ◽  
Vol 73 ◽  
pp. 06006
Author(s):  
Hernayanti ◽  
Santoso Slamet ◽  
Lestari Sri

Cadmium is one of a heavy metal which widely used in human life, especially in the electroplating industry and a mixture of textile materials. Cadmium that enters the body binds to the metallothioneins protein. It can increase the formation of free radical compounds, there by inhibiting enzyme activity such as nitric oxide synthase3. This gene regulates the expression of endothelial nitric oxide synthase which produce a nitric oxide. Nitric oxide role in regulated blood pressure as vasodilator with Angiotensin II as vasoconstriction. The susceptibility to Cd exposure will elevate if the polymorphisms of gene is found in population. The aim of this research was to know effect of cadmium to gene NOS3 polymorphisms on NO, systolic and diastolic blood pressure and antioxidant enzyme in Cd-exposed individual. The genotype individual were detected by Polymerase Chain Reaction-Restriction Fragment Length Polymorphisms (PCR-RLFP) with MBo1 restriction enzyme. Parameter recorded were blood Cd , NO level, SOD, systolic and diastolic. Data were analyzed by independent t-test. These result showed that 20% of 40 individual of cases subject were detected as polymorphisms individual of NOS3gene, with GA genotype. Their fragment DNA located on 206 bp, 119 bp and 87 bp, but non polymorphisms of NO gene is only located on 206 bp. The result show cadmium could influence polymorphisms NOS3gene and decrease NO production followed by increasing of blood pressure both systolic and diastolic. Cadmium also decrease antioxidant enzyme SOD and GPx level.


2015 ◽  
Vol 308 (8) ◽  
pp. C673-C683 ◽  
Author(s):  
Mohan Natarajan ◽  
Ryszard Konopinski ◽  
Manickam Krishnan ◽  
Linda Roman ◽  
Alakesh Bera ◽  
...  

Endothelial nitric oxide (NO) synthase (eNOS) is the predominant isoform that generates NO in the blood vessels. Many different regulators, including heat shock protein 90 (Hsp90), govern eNOS function. Hsp90-dependent phosphorylation of eNOS is a critical event that determines eNOS activity. In our earlier study we demonstrated an inhibitor-κB kinase-β (IKKβ)-Hsp90 interaction in a high-glucose environment. In the present study we further define the putative binding domain of IKKβ on Hsp90. Interestingly, IKKβ binds to the middle domain of Hsp90, which has been shown to interact with eNOS to stimulate its activity. This new finding suggests a tighter regulation of eNOS activity than was previously assumed. Furthermore, addition of purified recombinant IKKβ to the eNOS-Hsp90 complex reduces the eNOS-Hsp90 interaction and eNOS activity, indicating a competition for Hsp90 between eNOS and IKKβ. The pathophysiological relevance of the IKKβ-Hsp90 interaction has also been demonstrated using in vitro vascular endothelial growth factor-mediated signaling and an Ins2Akita in vivo model. Our study further defines the preferential involvement of α- vs. β-isoforms of Hsp90 in the IKKβ-eNOS-Hsp90 interaction, even though both Hsp90α and Hsp90β stimulate NO production. These studies not only reinforce the significance of maintaining a homeostatic balance of eNOS and IKKβ within the cell system that regulates NO production, but they also confirm that the IKKβ-Hsp90 interaction is favored in a high-glucose environment, leading to impairment of the eNOS-Hsp90 interaction, which contributes to endothelial dysfunction and vascular complications in diabetes.


2007 ◽  
Vol 156 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Félix Vargas ◽  
Juan Manuel Moreno ◽  
Rosemary Wangensteen ◽  
Isabel Rodríguez-Gómez ◽  
Joaquín García-Estañ

The experimental model of chronic inhibition of nitric oxide (NO) production has proven to be a useful tool to study cardiovascular and renal lesions produced by this type of hypertension, which are similar to those found in human hypertension. It also offers a unique opportunity to study the interaction of NO with the humoral systems, known to have a role in the normal physiology of vascular tone and renal function. This review provides a thorough and updated analysis of the interactions of NO with the endocrine system. There is special focus on the main vasoactive factors, including the renin-angiotensin-aldosterone system, catecholamines, vasopressin, and endothelin among others. Recent discoveries of crosstalk between the endocrine system and NO are also reported. Study of these humoral interactions indicates that NO is a molecule with ubiquitous function and that its inhibition alters virtually to all other known regulatory systems. Thus, hypothyroidism attenuates the pressor effect of NO inhibitor N-nitro-L-arginine methyl ester, whereas hyperthyroidism aggravates the effects of NO synthesis inhibition; the sex hormone environment determines the blood pressure response to NO blockade; NO may play a homeostatic role against the prohypertensive effects of mineralocorticoids, thyroid hormones and insulin; and finally, NO deficiency affects not only blood pressure but also glucose and lipid homeostasis, mimicking the human metabolic syndrome X, suggesting that NO deficiency may be a link between metabolic and cardiovascular disease.


Author(s):  
Manu Kupani ◽  
Smriti Sharma ◽  
Rajeev Kumar Pandey ◽  
Rajiv Kumar ◽  
Shyam Sundar ◽  
...  

Nitric oxide (NO) is an anti-microbial effector of the innate immune system which plays major role in non-specific killing of various pathogens including protozoan parasites. However, due to subversion of the host’s immune processes by pathogens, suboptimal production of NO is frequently found in many infection models. Previous studies have shown suppressed NO production during Leishmania donovani infection, the causative agent of visceral leishmaniasis (VL). Availability of L-Arginine, a semi-essential amino acid is required for inducible nitric oxide synthase (iNOS) mediated NO production. However, arginase is another enzyme, which if expressed concomitantly, may strongly compete for L-Arginine, and suppress NO production by iNOS. In the present study, plasma nitrite and arginase levels were measured in VL patients before and after successful drug treatment, endemic and non-endemic healthy donors. We observed significantly lower NO levels in the plasma of VL patients as compared to endemic controls, which improved significantly post-treatment. Significantly elevated arginase activity was also observed in the plasma of VL patients, which may be associated with NO deficiency. VL patients also showed significantly higher levels of IL-10 and TGF-β, which are known to regulate expression of arginase in various immune cells. In vitro studies with human peripheral blood mononuclear cells (PBMCs) further corroborated the role of IL-10 and TGF-β in arginase mediated suppression of NO production.


2008 ◽  
pp. 813-825
Author(s):  
J Török

This review concerns the role of nitric oxide (NO) in the pathogenesis of different models of experimental hypertension (NO-deficient, genetic, salt-dependent), which are characterized by a wide range of etiology. Although the contribution of NO may vary between different models of hypertension, a unifying characteristic of these models is the presence of oxidative stress that participates in the maintenance of elevated arterial pressure and seems to be a common denominator underlying endothelial dysfunction in various forms of experimental hypertension. Besides the imbalance between the endothelial production of vasorelaxing and vasoconstricting compounds as well as the relative insufficiency of vasodilator systems to compensate augmented vasoconstrictor systems, there were found numerous structural and functional abnormalities in blood vessels and heart of hypertensive animals. The administration of antihypertensive drugs, antioxidants and NO donors is capable to attenuate blood pressure elevation and to improve morphological and functional changes of cardiovascular system in some but not all hypertensive models. The failure to correct spontaneous hypertension by NO donor administration reflects the fact that sympathetic overactivity plays a key role in this form of hypertension, while NO production in spontaneously hypertensive rats might be enhanced to compensate increased blood pressure. A special attention should be paid to the modulation of sympathetic nervous activity in central and peripheral nervous system. These results extend our knowledge on the control of the balance between NO and reactive oxygen species production and are likely to be a basis for the development of new approaches to the therapy of diseases associated with NO deficiency.


2003 ◽  
Vol 285 (4) ◽  
pp. E871-E875 ◽  
Author(s):  
Marcella M. Hallemeesch ◽  
Ben J. A. Janssen ◽  
Wouter J. de Jonge ◽  
Peter B. Soeters ◽  
Wouter H. Lamers ◽  
...  

Increased nitric oxide (NO) production is the cause of hypotension and shock during sepsis. In the present experiments, we have measured the contribution of endothelial (e) and inducible (i) nitric oxide synthase (NOS) to systemic NO production in mice under baseline conditions and upon LPS treatment (100 μg/10 g ip LPS). NO synthesis was measured by the rate of conversion of l-[ guanidino-15N2]arginine to l-[ ureido-15N]citrulline, and the contribution of the specific NOS isoforms was evaluated by comparing NO production in eNOS-deficient [(–/–)] and iNOS(–/–) mice with that in wild-type (WT) mice. Under baseline conditions, NO production was similar in WT and iNOS(–/–) mice but lower in eNOS(–/–) mice [WT: 1.2 ± 0.2; iNOS(–/–): 1.2 ± 0.2; eNOS(–/–): 0.6 ± 0.3 nmol · 10 g body wt–1· min–1]. In response to the challenge with LPS (5 h), systemic NO production increased in WT and eNOS(–/–) mice but fell in iNOS(–/–) mice [WT: 2.7 ± 0.3; eNOS(–/–): 2.2 ± 0.6; iNOS(–/–): 0.7 ± 0.1 nmol · 10 g body wt–1· min–1]. After 5 h of LPS treatment, blood pressure had dropped 14 mmHg in WT but not in iNOS(–/–) mice. The present findings provide firm evidence that, upon treatment with bacterial LPS, the increase of NO production is solely dependent on iNOS, whereas that mediated by cNOS is reduced. Furthermore, the data show that the LPS-induced blood pressure response is dependent on iNOS.


Sign in / Sign up

Export Citation Format

Share Document