scholarly journals Role of thiosulfate in hydrogen sulfide-dependent redox signaling in endothelial cells

2017 ◽  
Vol 313 (2) ◽  
pp. H256-H264 ◽  
Author(s):  
Anna Leskova ◽  
Sibile Pardue ◽  
John D. Glawe ◽  
Christopher G. Kevil ◽  
Xinggui Shen

Recent reports have revealed that hydrogen sulfide (H2S) exerts critical actions to promote cardiovascular homeostasis and health. Thiosulfate is one of the products formed during oxidative H2S metabolism, and thiosulfate has been used extensively and safely to treat calcific uremic arteriopathy in dialysis patients. Yet despite its significance, fundamental questions regarding how thiosulfate and H2S interact during redox signaling remain unanswered. In the present study, we examined the effect of exogenous thiosulfate on hypoxia-induced H2S metabolite bioavailability in human umbilical vein endothelial cells (HUVECs). Under hypoxic conditions, we observed a decrease of GSH and GSSG levels in HUVECs at 0.5 and 4 h as well as decreased free H2S and acid-labile sulfide and increased bound sulfide at all time points. Treatment with exogenous thiosulfate significantly decreased the ratio of GSH/GSSG to total sulfide of HUVECs under 0.5 h of hypoxia but significantly increased this ratio in HUVECs under 4 h of hypoxia. These responses reveal that thiosulfate has different effects at low and high doses and under different O2 tensions. In addition, treatment with thiosulfate also diminished VEGF-induced cystathionine-γ-lyase expression and reduced VEGF-induced HUVEC proliferation under both normoxic and hypoxic conditions. These results indicate that thiosulfate can modulate H2S metabolites and signaling under various culture conditions that impact angiogenic activity. Thus, thiosulfate may serve as a unique sulfide donor to modulate endothelial responses under pathophysiological conditions involving angiogenesis. NEW & NOTEWORTHY This report provides new evidence that different levels of exogenous thiosulfate dynamically change discrete sulfide biochemical metabolite bioavailability in endothelial cells under normoxia or hypoxia, acting in a slow manner to modulate sulfide metabolites. Moreover, our findings also reveal that thiosulfate surprisingly inhibits VEGF-dependent endothelial cell proliferation associated with a reduction in cystathionine-γ-lyase protein levels.

2019 ◽  
Vol 20 (21) ◽  
pp. 5383 ◽  
Author(s):  
Li Zhang ◽  
Feifei Wang ◽  
Qing Zhang ◽  
Qiuming Liang ◽  
Shumei Wang ◽  
...  

Inflammation is a key mediator in the progression of atherosclerosis (AS). Benzoinum, a resin secreted from the bark of Styrax tonkinensis, has been widely used as a form of traditional Chinese medicine in clinical settings to enhance cardiovascular function, but the active components of the resin responsible for those pharmaceutical effects remain unclear. To better clarify these components, a new phenylpropane derivative termed stybenpropol A was isolated from benzoinum and characterized via comprehensive spectra a nalysis. We further assessed how this phenylpropane derivative affected treatment of human umbilical vein endothelial cells (HUVECs) with tumor necrosis factor-α (TNF-α). Our results revealed that stybenpropol A reduced soluble intercellular cell adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), interleukin-8 (IL-8), and interleukin-1β (IL-1β) expression by ELISA, inhibited apoptosis, and accelerated nitric oxide (NO) release in TNF-α-treated HUVECs. We further found that stybenpropol A decreased VCAM-1, ICAM-1, Bax, and caspase-9 protein levels, and increased the protein levels of Bcl-2, IKK-β, and IκB-α. This study identified a new, natural phenylpropane derivative of benzoinum, and is the first to reveal its cytoprotective effects in the context of TNF-α-treated HUVECs via regulation of the NF-κB and caspase-9 signaling pathways.


1987 ◽  
Author(s):  
O BOUTHERIN-FALSON ◽  
N BLAES

Prostacyclin (PGI2) is a major product of arachidonic acid metabolism in vascular endothelial cells. In addition to the role of exogenous agents, its production could be modulated by culture conditions : proliferative state, medium renewal, subcultivation... The use of endothelial cell growth factor (ECGF) associated with heparin has been shown to improve human endothelial cell proliferation. Here we report that human umbilical vein endothelial cells (HUVEC) grown in that medium produce less prostacyclin than without growth factor.HUVEC were cultured in RPMI-199 1:1 + 20% fetal calf serum, added or not with ECGF (Bovine hypothalamus extract BTI Cambridge, 24 ug/ml) and heparin (from porcine intestinal mucosa, Signa, 90 ug/ml). After 4 days in culture, medium was removed and replaced by Tyrode Hepes buffer and basal production was measured after 20 min. Cells were then submitted to 5 min thrombin to assess PGI2 production in stimulated conditions. PGI2 production was estimated by specific radioimmunoassay for 6 keto PGFjalpha. For each point, cell number in the culture was counted after Trypsin EDTA treatment. In the present study, cells grown in ECGF-heparin medium produce lower amount of PGI2, compared to heparin or control medium. This result was observed in both basal and stimulated conditions. For each medium (ECGF-heparin, heparin, control), correlations between PGI2 production per cell and log cell density were shown to be significantly negative.These observations suggest that ECGF effect on PGI2 production could be a consequence of its growth factor activity, notably by the fact that it leads to an endothelial monolayer made of more numerous cells. Since it is now suggested by a number of clinical observations that PGI2 is rather produced in pathological conditions, culture models showing a weak production of PGI2 appear in that connection doser to the physiological conditions.


Blood ◽  
2006 ◽  
Vol 107 (3) ◽  
pp. 931-939 ◽  
Author(s):  
Cassin Kimmel Williams ◽  
Ji-Liang Li ◽  
Matilde Murga ◽  
Adrian L. Harris ◽  
Giovanna Tosato

AbstractDelta-like 4 (Dll4), a membrane-bound ligand for Notch1 and Notch4, is selectively expressed in the developing endothelium and in some tumor endothelium, and it is induced by vascular endothelial growth factor (VEGF)-A and hypoxia. Gene targeting studies have shown that Dll4 is required for normal embryonic vascular remodeling, but the mechanisms underlying Dll4 regulatory functions are currently not defined. In this study, we generated primary human endothelial cells that overexpress Dll4 protein to study Dll4 function and mechanism of action. Human umbilical vein endothelial cells retrovirally transduced with Dll4 displayed reduced proliferative and migratory responses selectively to VEGF-A. Expression of VEGF receptor-2, the principal signaling receptor for VEGF-A in endothelial cells, and coreceptor neuropilin-1 was significantly decreased in Dll4-transduced endothelial cells. Consistent with Dll4 signaling through Notch, expression of HEY2, one of the transcription factors that mediates Notch function, was significantly induced in Dll4-overexpressing endothelial cells. The γ-secretase inhibitor L-685458 significantly reconstituted endothelial cell proliferation inhibited by immobilized extracellular Dll4 and reconstituted VEGFR2 expression in Dll4-overerexpressing endothelial cells. These results identify the Notch ligand Dll4 as a selective inhibitor of VEGF-A biologic activities down-regulating 2 VEGF receptors expressed on endothelial cells and raise the possibility that Dll4 may be exploited therapeutically to modulate angiogenesis.


2014 ◽  
Vol 306 (4) ◽  
pp. C322-C333 ◽  
Author(s):  
Andrea Zaniboni ◽  
Chiara Bernardini ◽  
Marco Alessandri ◽  
Chiara Mangano ◽  
Augusta Zannoni ◽  
...  

Several studies have already described the presence of specialized niches of precursor cells in vasculature wall, and it has been shown that these populations share several features with mesenchymal stromal cells (MSCs). Considering the relevance of MSCs in the cardiovascular physiopathology and regenerative medicine, and the usefulness of the pig animal model in this field, we reported a new method for MSC-like cell isolation from pig aorta. Filling the vessel with a collagenase solution for 40 min, all endothelial cells were detached and discarded and then collagenase treatment was repeated for 4 h to digest approximately one-third of the tunica media. The ability of our method to select a population of MSC-like cells from tunica media could be ascribed in part to the elimination of contaminant cells from the intimal layer and in part to the overnight culture in the high antibiotic/antimycotic condition and to the starvation step. Aortic-derived cells show an elongated, spindle shape, fibroblast-like morphology, as reported for MSCs, stain positively for CD44, CD56, CD90, and CD105; stain negatively for CD34 and CD45; and express CD73 mRNA. Moreover, these cells show the classical mesenchymal trilineage differentiation potential. Under our in vitro culture conditions, aortic-derived cells share some phenotypical features with pericytes and are able to take part in the formation of network-like structures if cocultured with human umbilical vein endothelial cells. In conclusion, our work reports a simple and highly suitable method for obtaining large numbers of precursor MSC-like cells derived from the porcine aortic wall.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yize Li ◽  
Yongmei Zhao ◽  
Hongyan Peng ◽  
Jing Zhang ◽  
Lun Bo ◽  
...  

Inhibitors of histone deacetylases (HDACi) have shown promising effects in preclinical applications for the treatment of many diseases. Confusedly though, the effects of the HDACi trichostatin A (TSA) on angiogenesis are variable among different diseases. This study investigated the direct effects of TSA on endothelial cells, which plays essential roles in angiogenesis and the underlying molecular events. TSA reduced the viability of human umbilical vein endothelial cells (HUVECs), in which proliferation-related genes including BIRC5, CKS1B, and NDC80 were found to be involved. Furthermore, signal transducer and activator of transcription 5 A (STAT5A) was demonstrated to be reduced by TSA and to mediate TSA-induced downregulation of BIRC5, CKS1B, and NDC80 and HUVEC proliferation. Mechanistically, data showed that STAT5A directly bound to the promoters of BIRC5, CKS1B, and NDC80 and activated their transcription through special DNA sequence sites. Finally, the TSA–STAT5A–BIRC5, CKS1B, and NDC80 axis also worked in a cancerous endothelial cell angiogenesis model. The results of this study revealed novel mechanisms underlying the effects of TSA on endothelial cells and provided insights for angiogenesis-associated diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Liu ◽  
Yanghui Ou ◽  
Yumeng Yang ◽  
Xuemei Zhang ◽  
Liqi Huang ◽  
...  

Punicalagin, a major ellagitannin isolated from pomegranate, is proved to have various pharmacological activities with an undefined therapy mechanism. The objective of this research was to demonstrate the effect of punicalagin on anti-inflammatory and angiogenic activation in human umbilical vein endothelial cells (HUVECs) and their potential mechanisms. Endothelial-leukocyte adhesion assay was applied to evaluate primary cultures of HUVECs activation following tumor necrosis factor alpha (TNF-α) treatment. The endothelial cell proliferation, migration, permeability and tube formation were assessed by EdU assay, wound migration assay, trans-endothelial electrical resistances (TEER) assay, and capillary-like tube formation assay, respectively. In addition, the expression of relevant proteins was assessed using Western blot analysis. We confirmed that punicalagin could reduce the adhesion of human monocyte cells to HUVECs in vitro and in vivo. Further, punicalagin decreased the expression of mRNA and proteins of ICAM-1 and VCAM-1 in HUVECs. Moreover, punicalagin inhibited permeability, proliferation, migration, and tube formation in VEGF-induced HUVECs, suppressed IKK-mediated activation of NF-κB signaling in TNF-α-induced endothelial cells, and inhibited vascular endothelial growth factor receptor 2 (VEGFR2) activation and downstream p-PAK1. Our findings indicated that punicalagin might have a protective effect on HUVECs activation, which suggested that punicalagin functions through an endothelial mediated mechanism for treating various disorders such as, cancer, rheumatoid arthritis, and cardiovascular disease.


1994 ◽  
Vol 267 (3) ◽  
pp. H874-H879 ◽  
Author(s):  
A. Pietersma ◽  
N. De Jong ◽  
J. F. Koster ◽  
W. Sluiter

The objective of this study was to investigate the effect of hypoxia on the adhesiveness of endothelial cells for granulocytes. Human umbilical vein endothelial cells (HUVEC) were exposed to a PO2 of 7.5 mmHg (1.0 kPa), and the adherence of granulocytes was assessed under continuous hypoxia by means of a hypoxic incubator room. After 2 h of hypoxia the adherence of granulocytes decreased to 50% of the normoxic control, which was not due to a decreased viability of the endothelial cells nor to an increased generation of the antiadhesive factors nitric oxide, prostacyclin, and adenosine. Hypoxia also had no effect on the expression of intercellular adhesion molecule (ICAM)-1 or ICAM-2 on the endothelium. Although the mechanism of the action of hypoxia on the adhesiveness of endothelial cells remains unclear as yet, our data suggest that HUVEC possess a protective mechanism that prevents granulocyte adherence to endothelial cells under extreme hypoxic conditions. The decreased adherence seems paradoxical to the in vivo situation for which the increased margination of granulocytes within the vascular compartment of the ischemic tissue has been observed. However, hypoxia did not impair the potential adhesiveness of HUVEC, since stimulation of endothelial cells under hypoxic conditions with calcium ionophore or lipopolysaccharide increased the adherence of granulocytes in a similar fashion as under normoxic conditions. We therefore conclude that the increased margination of granulocytes during ischemia may be accomplished by the additional stimulation of hypoxic endothelial cells.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2869 ◽  
Author(s):  
Kouki Inomata ◽  
Michiyo Honda

Bone is based on an elaborate system of mineralization and vascularization. In hard tissue engineering, diverse biomaterials compatible with osteogenesis and angiogenesis have been developed. In the present study, to examine the processes of osteogenesis and angiogenesis, osteoblast-like MG-63 cells were co-cultured with human umbilical vein endothelial cells (HUVECs) on a microfiber scaffold. The percentage of adherent cells on the scaffold was more than 60% compared to the culture plate, regardless of the cell type and culture conditions. Cell viability under both monoculture and co-culture conditions was constantly sustained. During the culture periods, the cells were spread along the fibers and extended pseudopodium-like structures on the microfibers three-dimensionally. Compared to the monoculture results, the alkaline phosphatase activity of the co-culture increased 3–6 fold, whereas the vascular endothelial cell growth factor secretion significantly decreased. Immunofluorescent staining of CD31 showed that HUVECs were well spread along the fibers and formed microcapillary-structures. These results suggest that the activation of HUVECs by co-culture with MG-63 could enhance osteoblastic differentiation in the microfiber scaffold, which mimics the microenvironment of the extracellular matrix. This approach can be effective for the construction of tissue-engineered bone with vascular networks.


Sign in / Sign up

Export Citation Format

Share Document