DNA damage is an early event in doxorubicin-induced cardiac myocyte death

2006 ◽  
Vol 291 (3) ◽  
pp. H1273-H1280 ◽  
Author(s):  
Thomas L'Ecuyer ◽  
Sanjeev Sanjeev ◽  
Ronald Thomas ◽  
Raymond Novak ◽  
Lauri Das ◽  
...  

Anthracyclines are antitumor agents the main clinical limitation of which is cardiac toxicity. The mechanism of this cardiotoxicity is thought to be related to generation of oxidative stress, causing lethal injury to cardiac myocytes. Although protein and lipid oxidation have been documented in anthracycline-treated cardiac myocytes, DNA damage has not been directly demonstrated. This study was undertaken to determine whether anthracyclines induce cardiac myocyte DNA damage and whether this damage is linked to a signaling pathway culminating in cell death. H9c2 cardiac myocytes were treated with the anthracycline doxorubicin at clinically relevant concentrations, and DNA damage was assessed using the alkaline comet assay. Doxorubicin induced DNA damage, as shown by a significant increase in the mean tail moment above control, an effect ameliorated by inclusion of a free radical scavenger. Repair of DNA damage was incomplete after doxorubicin treatment in contrast to the complete repair observed in H2O2-treated myocytes after removal of the agent. Immunoblot analysis revealed that p53 activation occurred subsequent in time to DNA damage. By a fluorescent assay, doxorubicin induced loss of mitochondrial membrane potential after p53 activation. Chemical inhibition of p53 prevented doxorubicin-induced cell death and loss of mitochondrial membrane potential without preventing DNA damage, indicating that DNA damage was proximal in the events leading from doxorubicin treatment to cardiac myocyte death. Specific doxorubicin-induced DNA lesions included oxidized pyrimidines and 8-hydroxyguanine. DNA damage therefore appears to play an important early role in anthracycline-induced lethal cardiac myocyte injury through a pathway involving p53 and the mitochondria.

2021 ◽  
Author(s):  
Marianne Mazevet ◽  
Maxance Ribeiro ◽  
Anissa Belhadef ◽  
Delphine Dayde ◽  
Anna Llach ◽  
...  

Rationale: The widely used chemotherapeutic agent Doxorubicin (Dox) induces cardiotoxicity leading to dilated cardiomyopathy and heart failure. This cardiotoxicity has been related to ROS generation, DNA intercalation, bioenergetic distress and cell death. However, alternative mechanisms are emerging, focusing on signaling pathways. Objective: We investigated the role of Exchange Protein directly Activated by cAMP (EPAC), key factor in cAMP signaling, in Dox-induced cardiotoxicity. Methods and Results: Dox was administrated in vivo (10 +/- 2 mg/kg, i.v.; with analysis at 2, 6 and 15 weeks post injection) in WT and EPAC1 KO C57BL6 mice. Cardiac function was analyzed by echocardiography and intracellular Ca2+ homeostasis by confocal microscopy in isolated ventricular cardiomyocytes. 15 weeks post-injections, Dox-treated WT mice, developed a dilated cardiomyopathy with decreased ejection fraction, increased telediastolic volume and impaired Ca2+ homeostasis, which were totally prevented in the EPAC1 KO mice. The underlying mechanisms were investigated in neonatal and adult rat cardiac myocytes under Dox treatment (1-10 uM). Flow cytometry, Western blot, BRET sensor assay, and RT-qPCR analysis showed that Dox induced DNA damage and cardiomyocyte cell death with apoptotic features rather than necrosis, including Ca2+-CaMKKβ-dependent opening of the Mitochondrial Permeability Transition Pore, dissipation of the Mitochondrial membrane potential, caspase activation, cell size reduction, and DNA fragmentation. Dox also led to an increase in both cAMP concentration and EPAC1 protein level and activity. The pharmacological inhibition of EPAC1 (CE3F4) but not EPAC2 alleviated the whole Dox-induced pattern of alterations including DNA damage, Mitochondrial membrane potential, apoptosis, mitochondrial biogenesis, dynamic, and fission/fusion balance, and respiratory chain activity, suggesting a crucial role of EPAC1 in these processes. Importantly, while preserving cardiomyocyte integrity, EPAC1 inhibition potentiated Dox-induced cell death in several human cancer cell lines. Conclusion: Thus, EPAC1 inhibition could be a valuable therapeutic strategy to limit Dox-induced cardiomyopathy without interfering with its antitumoral activity.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Toshitaka Yajima ◽  
Stanley Park ◽  
Hanbing Zhou ◽  
Michinari Nakamura ◽  
Mitsuyo Machida ◽  
...  

MAVS is a mitochondrial outer membrane protein that activates innate antiviral signaling by recognizing cytosolic viral RNAs and DNAs. While the discovery of MAVS is the first molecular evidence that links mitochondria to innate immune mechanisms, it is still unclear whether MAVS affects mitochondrial cell death as a member of caspase activation and recruitment domain (CARD)-containing proteins. We found that MAVS interacts with Bax through CARD by Yeast two-hybrid and a series of immunoprecipitation (IP) assay, which led us to hypothesize that MAVS functions not only in the innate antiviral mechanisms but also in the mitochondrial cell death pathway. Methods: 1) We examined molecular interaction between MAVS and Bax under oxidative stress by IP using isolated myocytes with H2O2 stimulation and the heart post ischemia-reperfusion (I/R). 2) We evaluated the effect of MAVS on mitochondrial membrane potential and apoptosis under H2O2 stimulation using isolated myocytes with adenoviral MAVS knockdown. 3) We investigated the impact of MAVS on %myocardial infarction (%MI) post I/R using cardiac-specific MAVS knockout (cKO) and transgenic (cTg) mice which we have originally generated. 4) We examined the effect of MAVS on recombinant Bax (rBax)-mediated cytochrome c release using isolated mitochondria from wild type (WT) and MAVS KO mice. Results: 1) The amount of Bax pulled down with MAVS was significantly increased in isolated myocytes with 0.2 mM H2O2 compared to those without stimulation (mean±SD; 1.808±0.14, n=5, p<0.001) and in the heart post I/R compared to sham (2.2±1.19, n=3, p=0.0081). 2) Myocytes with MAVS knockdown showed clear abnormalities in mitochondrial membrane potential and caspace-3 cleavage with 0.2 mM H2O2 compared to control cardiomyocytes. 3) MAVS cKO had significantly larger %MI than WT (81.9 ± 5.8% vs. 42.6 ± 13.6%, n=8, p=0.0008). In contrast, MAVS cTg had significantly smaller %MI that WT (30.0 ± 4.8% vs. 49.2 ± 4.8%, n=10, p=0.0113). 4) Mitochondria from MAVS KO exhibited cytochrome c release after incubation with 2.5 μ g of rBax while those from WT required 10 μ g of rBax. Conclusion: These results demonstrate that MAVS protects cardiomyocyte under oxidative stress by interfering with Bax-mediated cytochrome c release from mitochondria.


2020 ◽  
Vol 117 (37) ◽  
pp. 23113-23124
Author(s):  
Helena M. Viola ◽  
Ashay A. Shah ◽  
Victoria P. A. Johnstone ◽  
Henrietta Cserne Szappanos ◽  
Mark P. Hodson ◽  
...  

Currently there is an unmet need for treatments that can prevent hypertrophic cardiomyopathy (HCM). Using a murine model we previously identified that HCM causing cardiac troponin I mutation Gly203Ser (cTnI-G203S) is associated with increased mitochondrial metabolic activity, consistent with the human condition. These alterations precede development of the cardiomyopathy. Here we examine the efficacy of in vivo treatment of cTnI-G203S mice with a peptide derived against the α-interaction domain of the cardiac L-type calcium channel (AID-TAT) on restoring mitochondrial metabolic activity, and preventing HCM. cTnI-G203S or age-matched wt mice were treated with active or inactive AID-TAT. Following treatment, targeted metabolomics was utilized to evaluate myocardial substrate metabolism. Cardiac myocyte mitochondrial metabolic activity was assessed as alterations in mitochondrial membrane potential and flavoprotein oxidation. Cardiac morphology and function were examined using echocardiography. Cardiac uptake was assessed using an in vivo multispectral imaging system. We identified alterations in six biochemical intermediates in cTnI-G203S hearts consistent with increased anaplerosis. We also reveal that AID-TAT treatment of precardiomyopathic cTnI-G203S mice, but not mice with established cardiomyopathy, restored cardiac myocyte mitochondrial membrane potential and flavoprotein oxidation, and prevented myocardial hypertrophy. Importantly, AID-TAT was rapidly targeted to the heart, and not retained by the liver or kidneys. Overall, we identify biomarkers of HCM resulting from the cTnI mutation Gly203Ser, and present a safe, preventative therapy for associated cardiomyopathy. Utilizing AID-TAT to modulate cardiac metabolic activity may be beneficial in preventing HCM in “at risk” patients with identified Gly203Ser gene mutations.


1999 ◽  
Vol 19 (12) ◽  
pp. 8547-8558 ◽  
Author(s):  
Luowei Li ◽  
Patricia S. Lorenzo ◽  
Krisztina Bogi ◽  
Peter M. Blumberg ◽  
Stuart H. Yuspa

ABSTRACT Inactivation of protein kinase Cδ (PKCδ) is associated with resistance to terminal cell death in epidermal tumor cells, suggesting that activation of PKCδ in normal epidermis may be a component of a cell death pathway. To test this hypothesis, we constructed an adenovirus vector carrying an epitope-tagged PKCδ under a cytomegalovirus promoter to overexpress PKCδ in normal and neoplastic keratinocytes. While PKCδ overexpression was detected by immunoblotting in keratinocytes, the expression level of other PKC isozymes, including PKCα, PKCɛ, PKCζ, and PKCη, did not change. Calcium-independent PKC-specific kinase activity increased after infection of keratinocytes with the PKCδ adenovirus. Activation of PKCδ by 12-O-tetradecanoylphorbol-13-acetate (TPA) at a nanomolar concentration was lethal to normal and neoplastic mouse and human keratinocytes overexpressing PKCδ. Lethality was inhibited by PKC selective inhibitors, GF109203X and Ro-32-0432. TPA-induced cell death was apoptotic as evidenced by morphological criteria, TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay, DNA fragmentation, and increased caspase activity. Subcellular fractionation indicated that PKCδ translocated to a mitochondrial enriched fraction after TPA activation, and this finding was confirmed by confocal microscopy of cells expressing a transfected PKCδ-green fluorescent protein fusion protein. Furthermore, activation of PKCδ in keratinocytes altered mitochondrial membrane potential, as indicated by rhodamine-123 fluorescence. Mitochondrial inhibitors, rotenone and antimycin A, reduced TPA-induced cell death in PKCδ-overexpressing keratinocytes. These results indicate that PKCδ can initiate a death pathway in keratinocytes that involves direct interaction with mitochondria and alterations of mitochondrial function.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Manman Gu ◽  
Jing Xu ◽  
Chunyang Han ◽  
Youxi Kang ◽  
Tengfei Liu ◽  
...  

Berberine, an isoquinoline alkaloid isolated from several traditional Chinese herbal medicines (TCM), exhibits a strong antimicrobial activity in the treatment of diarrhea. However, it causes human as well as animal toxicity from heavy dosage. The present study was conducted to investigate the cytotoxicity of berberine and its possible trigger mechanisms resulting in cell cycle arrest, DNA damage, ROS (reactive oxygen species) level, mitochondrial membrane potential change, and cell apoptosis in L929 murine fibroblast (L929) cells. The cells were culturedin vitroand treated with different concentrations of berberine for 24 h. The results showed that cell viability was significantly decreased in a subjected dose-dependent state; berberine concentrations were higher than 0.05 mg/mL. Berberine at a concentration above 0.1 mg/mL altered the morphology of L929 cells. Cells at G2/M phase were clear that the level of ROS and cell apoptosis rates increased in 0.1 mg/mL group. Each DNA damage indicator score (DIS) increased in groups where concentration of berberine was above 0.025 mg/mL. The mitochondrial membrane potential counteractive balance mechanics were significantly altered when concentrations of berberine were above 0.005 mg/mL. In all, the present study suggested that berberine at high dosage exhibited cytotoxicity on L929 which was related to resultant: cell cycle arrest; DNA damage; accumulation of intracellular ROS; reduction of mitochondrial membrane potential; and cell apoptosis.


2007 ◽  
Vol 82 (2) ◽  
pp. 1011-1020 ◽  
Author(s):  
W. M. Yeo ◽  
Yuji Isegawa ◽  
Vincent T. K. Chow

ABSTRACT To better understand the pathogenesis of human herpesvirus 6 (HHV-6), it is important to elucidate the functional aspects of immediate-early (IE) genes at the initial phase of the infection. To study the functional role of the HHV-6B IE gene encoding U95, we generated a U95-Myc fusion protein and screened a pretransformed bone marrow cDNA library for U95-interacting proteins, using yeast-two hybrid analysis. The most frequently appearing U95-interacting protein identified was GRIM-19, which belongs to the family of genes associated with retinoid-interferon mortality and serves as an essential component of the oxidative phosphorylation system. This interaction was verified by both coimmunoprecipitation and confocal microscopic coimmunolocalization. Short-term HHV-6B infection of MT-4 T-lymphocytic cells induced syncytial formation, resulted in decreased mitochondrial membrane potential, and led to progressively pronounced ultrastructural changes, such as mitochondrial swelling, myelin-like figures, and a loss of cristae. Compared to controls, RNA interference against U95 effectively reduced the U95 mRNA copy number and abrogated the loss of mitochondrial membrane potential. Our results indicate that the high affinity between U95 early viral protein and GRIM-19 may be closely linked to the detrimental effect of HHV-6B infection on mitochondria. These findings may explain the alternative cell death mechanism of expiration, as opposed to apoptosis, observed in certain productively HHV-6B-infected cells. The interaction between U95 and GRIM-19 is thus functionally and metabolically significant in HHV-6B-infected cells and may be a means through which HHV-6B modulates cell death signals by interferon and retinoic acid.


Sign in / Sign up

Export Citation Format

Share Document