Interpreting cardiac muscle force-length dynamics using a novel functional model

2004 ◽  
Vol 286 (4) ◽  
pp. H1535-H1545 ◽  
Author(s):  
Kenneth B. Campbell ◽  
Murali Chandra ◽  
Robert D. Kirkpatrick ◽  
Bryan K. Slinker ◽  
William C. Hunter

To describe the dynamics of constantly activated cardiac muscle, we propose that length affects force via both recruitment and distortion of myosin cross bridges. This hypothesis was quantitatively tested for descriptive and explanative validity. Skinned cardiac muscle fibers from animals expressing primarily α-myosin heavy chain (MHC) (mouse, rat) or β-MHC (rabbit, ferret) were activated with solutions from pCa 6.1 to 4.3. Activated fibers were subjected to small-amplitude length perturbations [Δ L( t)] rich in frequency content between 0.1 and 40 Hz. In descriptive validation tests, the model was fit to the ensuing force response [ΔF( t)] in the time domain. In fits to 118 records, the model successfully accounted for most of the measured variation in ΔF( t) ( R2 range, 0.997–0.736; median, 0.981). When some residual variations in ΔF( t) were not accounted for by the model (as at low activation), there was very little coherence (<0.5) between these residual force variations and the applied Δ L( t) input function, indicating that something other than Δ L( t) was causing the measured variation in ΔF( t). With one exception, model parameters were estimated with standard errors on the order of 1% or less. Thus parameters of the recruitment component of the model could be uniquely separated from parameters of the distortion component of the model and parameters estimated from any given fiber could be considered unique to that fiber. In explanative validation tests, we found that recruitment and distortion parameters were positively correlated with independent assessments of the physiological entity they were assumed to represent. The recruitment distortion model was judged to be valid from both descriptive and explanative perspectives and is, therefore, a useful construct for describing and explaining dynamic force-length relationships in constantly activated cardiac muscle.

2011 ◽  
Vol 64 (S1) ◽  
pp. S3-S18 ◽  
Author(s):  
Yuanxi Yang ◽  
Jinlong Li ◽  
Junyi Xu ◽  
Jing Tang

Integrated navigation using multiple Global Navigation Satellite Systems (GNSS) is beneficial to increase the number of observable satellites, alleviate the effects of systematic errors and improve the accuracy of positioning, navigation and timing (PNT). When multiple constellations and multiple frequency measurements are employed, the functional and stochastic models as well as the estimation principle for PNT may be different. Therefore, the commonly used definition of “dilution of precision (DOP)” based on the least squares (LS) estimation and unified functional and stochastic models will be not applicable anymore. In this paper, three types of generalised DOPs are defined. The first type of generalised DOP is based on the error influence function (IF) of pseudo-ranges that reflects the geometry strength of the measurements, error magnitude and the estimation risk criteria. When the least squares estimation is used, the first type of generalised DOP is identical to the one commonly used. In order to define the first type of generalised DOP, an IF of signal–in-space (SIS) errors on the parameter estimates of PNT is derived. The second type of generalised DOP is defined based on the functional model with additional systematic parameters induced by the compatibility and interoperability problems among different GNSS systems. The third type of generalised DOP is defined based on Bayesian estimation in which the a priori information of the model parameters is taken into account. This is suitable for evaluating the precision of kinematic positioning or navigation. Different types of generalised DOPs are suitable for different PNT scenarios and an example for the calculation of these DOPs for multi-GNSS systems including GPS, GLONASS, Compass and Galileo is given. New observation equations of Compass and GLONASS that may contain additional parameters for interoperability are specifically investigated. It shows that if the interoperability of multi-GNSS is not fulfilled, the increased number of satellites will not significantly reduce the generalised DOP value. Furthermore, the outlying measurements will not change the original DOP, but will change the first type of generalised DOP which includes a robust error IF. A priori information of the model parameters will also reduce the DOP.


1999 ◽  
Vol 276 (3) ◽  
pp. H998-H1011 ◽  
Author(s):  
Amir Landesberg ◽  
Samuel Sideman

The well-known linear relationship between oxygen consumption and force-length area or the force-time integral is analyzed here for isometric contractions. The analysis, which is based on a biochemical model that couples calcium kinetics with cross-bridge cycling, indicates that the change in the number of force-generating cross bridges with the change in the sarcomere length depends on the force generated by the cross bridges. This positive-feedback phenomenon is consistent with our reported cooperativity mechanism, whereby the affinity of the troponin for calcium and, hence, cross-bridge recruitment depends on the number of force-generating cross bridges. Moreover, it is demonstrated that a model that does not include a feedback mechanism cannot describe the dependence of energy consumption on the loading conditions. The cooperativity mechanism, which has been shown to determine the force-length relationship and the related Frank-Starling law, is shown here to provide the basis for the regulation of energy consumption in the cardiac muscle.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1933
Author(s):  
Vittorio Gusella ◽  
Giuseppina Autuori ◽  
Patrizia Pucci ◽  
Federico Cluni

The use of fractional models to analyse nonlocal behaviour of solids has acquired great importance in recent years. The aim of this paper is to propose a model that uses the fractional Laplacian in order to obtain the equation ruling the dynamics of nonlocal rods. The solution is found by means of numerical techniques with a discretisation in the space domain. At first, the proposed model is compared to a model that uses Eringen’s classical approach to derive the differential equation ruling the problem, showing how the parameters used in the proposed fractional model can be estimated. Moreover, the physical meaning of the model parameters is assessed. The model is then extended in dynamics by means of a discretisation in the time domain using Newmark’s method, and the responses to different dynamic conditions, such as an external load varying with time and free vibrations due to an initial deformation, are estimated, showing the difference of behaviour between the local response and the nonlocal response. The obtained results show that the proposed model can be used efficiently to estimate the response of the nonlocal rod both to static and dynamic loads.


2000 ◽  
Vol 276 (7) ◽  
pp. 5353-5359 ◽  
Author(s):  
Christian C. Witt ◽  
Brenda Gerull ◽  
Michael J. Davies ◽  
Thomas Centner ◽  
Wolfgang A. Linke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document