Arteriolar endothelial cell barrier separates two populations of muscarinic receptors

1992 ◽  
Vol 262 (4) ◽  
pp. H1311-H1315 ◽  
Author(s):  
R. J. Rivers ◽  
B. R. Duling

The endothelium of arterioles can function as a barrier to diffusion of hydrophilic molecules when studied in vitro. Thus a substance applied to one side of the arteriole is relatively ineffective in reaching receptors on the opposite side of the vessel wall unless it is lipid soluble. To study the receptor populations on the two sides of the arteriolar endothelium, we used micropipettes to apply methacholine (MCh; 1.0 microM), either luminally or adventitially, for 5 s to the arterioles of the cheek pouch of pentobarbital-anesthetized hamsters. MCh equally dilated the arterioles regardless of the side of application. That different populations of receptors are located on either side of the arteriole was shown by the fact that adventitially applied hydrophilic methscopolamine was ineffective in blocking the effects of the luminally applied MCh but completely blocked the effects of abluminally applied MCh. In contrast, the luminal population of receptors was easily blocked by adventially applied scopolamine, which is lipophilic. Separate and independent populations of receptors in the vessel wall suggests the potential for differential control between humoral and adventitial sources of vasoactive metabolites.

1982 ◽  
Vol 243 (4) ◽  
pp. H598-H606 ◽  
Author(s):  
R. G. Dacey ◽  
B. R. Duling

Penetrating, intracerebral arterioles from rat were isolated, cannulated, and studied in vitro. Vessel wall elements were found to consist of an endothelial cell layer, one smooth muscle cell layer, and a thin adventitial layer or leptomeningeal sheath. Smooth muscle cell nuclei were oriented perpendicular to the vessel's longitudinal axis; endothelial cell nuclei were parallel to the axis. Mean vessel diameter with the smooth muscle inactivated (passive diameter) was 36.7 +/- 1.6 (SE) micrometer. Spontaneous smooth muscle tone developed at 37 degrees C and reduced vessel diameter to 70 +/- 4% of passive diameter. Vessels were activated by the extraluminal application of 140 mM KCl solution at pH 8.00, which produced a transient contraction that decayed within 30 s to a steady contraction of somewhat less intensity. Changes in intravascular pressure were used to alter wall tension of the vessels. Tension in the vessel wall was computed, and length-tension curves for the arteriolar smooth muscle were approximated. Length-tension relationships similar to those seen in other smooth-muscle preparations were found with maximal estimated force development of 1.29 x 10(-5) N . m-2. Alterations of bath pH caused changes in vessel diameter that were inversely related to extraluminal pH and varied by approximately 77% in the range from pH 6.85 to 8.00. Adenosine dilated vessels to 140 +/- 6% of control diameter at a concentration of 10(-5) M. The mechanical characteristics and the reactivity to H+, K+, and adenosine of these vessels were quantitatively consistent with in vitro data from larger cerebral vessels and in vivo data from pial arteries.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3043-3043
Author(s):  
Jeong A. Kim ◽  
Oak Kee Hong ◽  
Jong Wook Hong ◽  
Hal E. Broxmeyer

Abstract Abstract 3043 Poster Board II-1019 Angiogenic sprouting needs to navigate through tissues to establish a vascular branching pattern. Such angiogenic guidance is mainly inferred by nonrandom angiogenic sprouting in the developing central nervous system (CNS). In mammalian retina, a vascular plexus initially forms, superimposed on a preexisting astrocyte-plexus, and retinal astrocytes begin to express vascular endothelial growth factor (VEGF-A), which stimulates endothelial cells to sprout radially from the optic nerve head into the retinal periphery. However, there has been little investigation of the role of astrocyte-plexus in new vessel formation of other ischemic sites besides retina. We recently found that infiltrated CD11b+ cells in ischemic muscles differentiate into endothelial-like cells in vitro, and that direct-injection of muscle-derived CD11b+ cells enhances recovery of blood perfusion in ischemic hind-limbs of C57BL/6 mice. To study if the astrocytes are related to the neovascularization process in ischemic limbs, infiltrated CD11b+ myeloid-cells in ischemic muscles were isolated 4 days after femoral artery dissection, and then seeded at 0.5×105/cm2 onto Matrigel and cultured in EGM-2 medium. Under these conditions, we tested the following hypotheses: (1) cultured cells initially form an astrocyte-network in vitro, and (2) astrocytes are involved in the formation of vascular structure. Seven days after the cells were embedded in Matrigel, spindle shaped cells grew, spread-out radially from cell clusters to the periphery, and established a mesh-like network expressing glial fibrillary acidic protein (GFAP), a marker for astrocyte. These spindle shaped cells were also positive for pericyte markers: desmin, NG-2, and platelet-derived growth factor receptor (PDGFR)-β. Interestingly, proliferating endothelial cells were closely associated with astrocytes by extension of endothelial cell filopodia on astrocytes. This observation is consistent that astrocyte scaffold guides extension of endothelial cell filopodia. Two weeks after cells were embedded in Matrigel, CD11b+ cells expanded and were layered in the same way to form vessel wall-like structures consisting of hundreds of cells. Spindle shaped GFAP-positive cells gradually expressed smooth muscle-actin at the bottom of the culture plate, migrated to the vessel wall-like structures, and covered the surface of the walls like pericytes. Taken together with the novel finding of astrocyte-like cell differentiation from CD11b+ cells from Matrigel culture, mobilization of CD11b+ myeloid-cells to regions of muscle ischemia would appear to play an important role in neovascularization after ischemic injury. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 133 (20) ◽  
pp. 2045-2059 ◽  
Author(s):  
Da Zhang ◽  
Xiuli Wang ◽  
Siyao Chen ◽  
Selena Chen ◽  
Wen Yu ◽  
...  

Abstract Background: Pulmonary artery endothelial cell (PAEC) inflammation is a critical event in the development of pulmonary arterial hypertension (PAH). However, the pathogenesis of PAEC inflammation remains unclear. Methods: Purified recombinant human inhibitor of κB kinase subunit β (IKKβ) protein, human PAECs and monocrotaline-induced pulmonary hypertensive rats were employed in the study. Site-directed mutagenesis, gene knockdown or overexpression were conducted to manipulate the expression or activity of a target protein. Results: We showed that hydrogen sulfide (H2S) inhibited IKKβ activation in the cell model of human PAEC inflammation induced by monocrotaline pyrrole-stimulation or knockdown of cystathionine γ-lyase (CSE), an H2S generating enzyme. Mechanistically, H2S was proved to inhibit IKKβ activity directly via sulfhydrating IKKβ at cysteinyl residue 179 (C179) in purified recombinant IKKβ protein in vitro, whereas thiol reductant dithiothreitol (DTT) reversed H2S-induced IKKβ inactivation. Furthermore, to demonstrate the significance of IKKβ sulfhydration by H2S in the development of PAEC inflammation, we mutated C179 to serine (C179S) in IKKβ. In purified IKKβ protein, C179S mutation of IKKβ abolished H2S-induced IKKβ sulfhydration and the subsequent IKKβ inactivation. In human PAECs, C179S mutation of IKKβ blocked H2S-inhibited IKKβ activation and PAEC inflammatory response. In pulmonary hypertensive rats, C179S mutation of IKKβ abolished the inhibitory effect of H2S on IKKβ activation and pulmonary vascular inflammation and remodeling. Conclusion: Collectively, our in vivo and in vitro findings demonstrated, for the first time, that endogenous H2S directly inactivated IKKβ via sulfhydrating IKKβ at Cys179 to inhibit nuclear factor-κB (NF-κB) pathway activation and thereby control PAEC inflammation in PAH.


Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


1967 ◽  
Vol 18 (03/04) ◽  
pp. 592-604 ◽  
Author(s):  
H. R Baumgartner ◽  
J. P Tranzer ◽  
A Studer

SummaryElectron microscopic and histologic examination of rabbit ear vein segments 4 and 30 min after slight endothelial damage have yielded the following findings :1. Platelets do not adhere to damaged endothelial cells.2. If the vessel wall is denuded of the whole endothelial cell, platelets adhere to the intimai basement lamina as do endothelial cells.3. The distance between adherent platelets as well as endothelial cells and intimai basement lamina measures 10 to 20 mµ, whereas the distance between aggregated platelets is 30 to 60 mµ.4. 5-hydroxytryptamine (5-HT) is released from platelets during viscous metamorphosis at least in part as 5-HT organelles.It should be noted that the presence of collagen fibers is not necessary for platelet thrombus formation in vivo.


1988 ◽  
Vol 08 (02) ◽  
pp. 90-99 ◽  
Author(s):  
H. Schröder ◽  
K. Schrör

ZusammenfassungOrganische Nitrate unterschiedlicher chemischer Struktur sowie Nitroprussidnatrium und Molsidomin (bzw. ihre biologisch aktiven Metaboliten) können die (primäre) Aggregation und Sekretion von Humanthrombozyten in vitro und ex vivo hemmen. Eine solche Wirkung wird für Molsidomin (SIN-1) und Nitroprussidnatrium in vitro in Konzentrationen beobachtet, die in der gleichen Größenordnung liegen wie die vasodilatierenden Effekte der Substanzen. Dagegen sind für eine direkte Antiplättchenwirkung organischer Nitrate (Glyzeryltrinitrat, Isosorbiddinitr at, Isosorbidmononitrate, Teopranitol) in vitro Konzentrationen erforderlich, die ca. 100- bis 1000fach höher sind als die Plasmaspiegel der Substanzen nach therapeutischer Dosierung bzw. die Konzentrationen, die isolierte Gefäßstreifen relaxieren. Als gemeinsamer Wirkungsmechanismus der direkten thrombozy-tenfunktionshemmenden und gefäßerweiternden Wirkung all dieser Substanzen kann heute eine Stickoxid-(NO)-vermittelte Stimulation der cGMP-Bildung angenommen werden, das aus organischen Nitraten als »Pro-drug« entsteht. Die Freisetzung von NO, eines »endothelial cell-derived relaxing factors« (EDRF) aus Nitroprussidnatrium und SIN-1 erfolgt spontan. Dagegen erfordert die Freisetzung von NO aus organischen Nitraten einen enzymatischen Stoffwechselweg, der in isolierten Thrombozyten nicht vorhanden ist. Eine Antiplättchenwirkung organischer Nitrate in vivo bzw. ex vivo wird daher über die Stimulation eines endothelialen, thrombozyteninhibitorischen Faktors erklärt. Hierbei sind Prostazyklin sowie ein bisher unbekannter Endothel-zellfaktor neben einer synergistischen Wirkung organischer Nitrate mit endogenem Prostazyklin in Diskussion. Eine thrombozytenfunktionshemmen-de Wirkung organischer Nitrate könnte in Kombination mit ihren hämody-namischen Effekten auch für die an-tianginöse Wirkung in der Klinik bedeutsam sein, insbesondere zur Verhinderung vasospastischer Zustände bei der instabilen Angina pectoris.


1994 ◽  
Vol 71 (01) ◽  
pp. 147-153 ◽  
Author(s):  
Siw Frebelius ◽  
Ulf Hedin ◽  
Jesper Swedenborg

SummaryThe thrombogenicity of the vessel wall after endothelial denudation is partly explained by an impaired inhibition of thrombin on the subendothelium. We have previously reported that thrombin coagulant activity can be detected on the vessel wall after balloon injury in vivo. The glycosaminoglycans of the subendothelium differ from those of the endothelium and have a lower catalyzing effect on antithrombin III, but inhibition of thrombin can still be augmented by addition of antithrombin III to the injured vessel surface.In this study the effect of antithrombin III and heparin on thrombin coagulant activity on the vessel wall was studied after in vivo balloon injury of the rabbit aorta using biochemical and immunohistochemical methods and thrombin was analysed after excision of the vessel. Continuous treatment with heparin, lasting until sacrifice of the animal, or treatment with antithrombin III resulted in significant reduction of thrombin coagulant activity on the injured aorta. Heparin given only in conjunction with the injury did not prevent thrombin coagulant activity or deposition of fibrin on the surface.The capacity of the injured vessel wall to inhibit thrombin in vitro was improved on aortic segments obtained from animals receiving antithrombin III but not from those given heparin. It is concluded that treatment with antithrombin III interferes with thrombin appearance on the vessel wall after injury and thereby reduces the risk for thrombosis.


Peptides ◽  
1986 ◽  
Vol 7 (3) ◽  
pp. 425-429 ◽  
Author(s):  
Jeroen A.D.M. Tonnaer ◽  
Marianna Van Vugt ◽  
Joop S. De Graaf

Sign in / Sign up

Export Citation Format

Share Document