Role of endogenous opioids and serotonin in the hemodynamic response to hemorrhage during hypoxia

1995 ◽  
Vol 269 (5) ◽  
pp. H1597-H1606 ◽  
Author(s):  
T. C. Resta ◽  
J. M. Resta ◽  
B. R. Walker

Previous studies from our laboratory indicate that acute but not chronic hypoxia decreases the hemorrhage volume required to elicit reflex hypotension. Furthermore, chronically hypoxic animals exhibit an elevated hypotensive threshold during both normoxia and hypoxia compared with control animals. Because reports suggest that opioid and serotonergic mechanisms may be involved in mediating the sympathoinhibition that occurs with hemorrhage, we hypothesized that opioid and/or serotonergic systems are stimulated during hemorrhage under conditions of acute hypoxia and suppressed after chronic exposure to hypoxia and are thus responsible for the altered cardiovascular responses to hemorrhage under each condition. Control and chronically hypoxi rats were administered either the opioid receptor antagonist naltrexone (1 mg/kg), the selective 5-hydroxytryptamine receptor subtype 3 (5-HT3) serotonergic receptor antagonist MDL-72222 (0.5 mg/kg), or their respective vehicles intravenously before hemorrhage was initiated during normoxia or hypoxia (FIO2 = 0.12). In control animals, pretreatment with naltrexone increased the hemorrhage was initiated volume required to achieve hypotension in hypoxic but not normoxic conditions. Naltrexone had no effect on hypotensive threshold in chronically hypoxic animals under conditions of either normoxia or hypoxia. In addition, MDL-72222 had no effect on hypotensive threshold in either control or chronically hypoxic animals in either normoxic or hypoxic conditions. We conclude that endogenous opioids may contribute to the reflex hypotension that occurs during hypoxic hemorrhage in control rats, while no such involvement is evident in chronically hypoxic animals. Furthermore, peripheral 5-HT3 receptors are not likely involved in this response during either normoxic or hypoxic hemorrhage in control or chronically hypoxic rats.

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Bryan S Yung ◽  
Sunny Y Xiang ◽  
Nicole Purcell ◽  
Hugh Rosen ◽  
Jerold Chun ◽  
...  

Sphingosine-1-phoshpate (S1P) is a bioactive lysophospholipid, generated and released at sites of tissue injury. S1P signals through a variety of G-protein coupled receptor subtypes and there are three major sub-types, S1P 1 , S1P 2 , and S1P 3 , to mediate cardiovascular responses. S1P 2 and S1P 3 receptors couple to Gα i , Gα 12 , Gα 13 and Gα q and we first examined the contribution of S1P 2 and S1P 3 to cardiac hypertrophy using S1P 2 and S1P 3 knockout (KO) mice and found that there is no difference in hypertrophy induced by pressure-overload. We previously showed that S1P provides cardioprotection against oxidative stress such as ischemia/reperfusion in which RhoA activation and its downstream effector PKD1 play an important role. It has not, however, been determined which S1P receptor subtype is responsible for S1P mediated cardioprotection. We knocked down the three major S1P receptors using siRNA in neonatal rat ventricular myocytes (NRVMs) and assessed RhoA and PKD1 activation induced by S1P. Knockdown of S1P 3 abolished RhoA activation and largely attenuated phosphorylation of PKD1 while knockdown of S1P 1 and S1P 2 did not. Using siRNA or pertussis toxin to inhibit different G-proteins, we further established that S1P regulates RhoA activation through Gα 13 , but not Gα 12 , Gα q , or Gα i . To investigate the role of S1P 3 receptors in the adult heart, hearts were isolated from wild-type or S1P 3 KO adult mice, perfused in the Langendorff mode and subjected to ex vivo ischemia/reperfusion. As previously reported, S1P perfusion significantly reduced infarct size induced by ischemia/reperfusion in WT hearts (by 50%), but this protection was abolished in the S1P 3 KO mouse heart. To further confirm the role of S1P 3 in cardioprotection we perfused WT mouse hearts with an S1P 3 -specific agonist CYM-51736. We observed that CYM-51736 attenuated the infarct size to a similar degree as that observed with S1P. Our findings reveal that activation of the S1P 3 receptor coupling to Gα 13 and subsequent RhoA activation is responsible for cardioprotection against ischemia/reperfusion. Accordingly specific drug targeting of S1P 3 receptors could provide therapeutic benefits in ischemic heart disease without the undesirable effects of global activation of other cardiac S1P receptors.


Reproduction ◽  
2007 ◽  
Vol 134 (5) ◽  
pp. 713-719 ◽  
Author(s):  
Rogério Ferreira ◽  
João Francisco Oliveira ◽  
Rafael Fernandes ◽  
José Ferrugem Moraes ◽  
Paulo Bayard Gonçalves

There is evidence that the renin–angiotensin system plays an important role in ovulation in cattle. Using anin vivomodel, we investigated the role of angiotensin (Ang) II in bovine ovulation by injecting Ang II receptor antagonists into ovulatory follicles. Animals (n= 102) were pre-synchronized and, when the follicles reached 12 mm, they were given the respective treatment and the cows received GnRH agonist (i.m.) to induce ovulation. The ovulation rate was significantly lower when 100μM saralasin (Ang II receptor antagonist) was intrafollicularly injected (14.3%) in comparison with saline solution (83.3%). Based on these results, a second experiment was carried out to determine the timing of Ang II’s critical role in ovulation. Saralasin inhibited ovulation only when applied at 0 and 6 h (16.7 and 42.9% ovulation rate in the 0- and 6-h groups respectively), but not at 12 h (100%) following GnRH agonist treatment. To investigate the subtypes of Ang II receptors implicated in the LH-induced ovulation, losartan (LO; AT1-Ang II receptor antagonist), PD123 319 (AT2-Ang II receptor antagonist), LO+PD123 319, or saline were intrafollicularly injected when the cows were challenged with GnRH agonist. Ovulation was inhibited by PD123 319 and LO+PD123 319 (50.0 and 33.3% on ovulation rate respectively), but not by LO or saline solution (100% ovulation in both groups). From these results, we suggest that Ang II plays a pivotal role in the early mechanism of bovine ovulation via the AT2receptor subtype.


1994 ◽  
Vol 267 (3) ◽  
pp. R619-R627 ◽  
Author(s):  
T. C. Resta ◽  
R. D. Russ ◽  
M. P. Doyle ◽  
J. M. Martinez ◽  
B. R. Walker

Previous work from our laboratory had demonstrated attenuation of systemic vasoreactivity to pressor agents in rats after acute or chronic exposure to hypoxia. Therefore we hypothesized that hemorrhage of acutely hypoxic (12% O2) or chronically hypoxic (barometric pressure 380 mmHg for 3 wk) rats would deter the normal increase in total peripheral resistance (TPR) and thus decrease the ability to maintain blood pressure. Progressive hemorrhage (2% of blood volume per min) was performed under conditions of either normoxia or acute hypoxia in conscious rats. In control animals, the increase in TPR observed during normoxic hemorrhage was absent when hemorrhage was performed in acute hypoxia. Furthermore, the amount of blood removal required to achieve hypotension was reduced under conditions of acute hypoxia. In contrast, chronically hypoxic rats exhibited no difference in the threshold for hypotension between conditions of acute normoxia and hypoxia and demonstrated an increased hypotensive threshold under both normoxic and hypoxic conditions compared with control animals. We next hypothesized that the prolonged threshold for hypotension observed in chronically hypoxic rats might be due to hypoxia-induced right ventricular hypertrophy. Such ventricular hypertrophy may minimize stimulation of ventricular volume receptors thought to elicit the reflex fall in heart rate and TPR occurring in extreme underfill conditions. Therefore we compared the cardiovascular responses to hemorrhage in rats with right ventricular hypertrophy resulting from administration of monocrotaline with those from rats treated with vehicle.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 68 (2) ◽  
pp. 678-686 ◽  
Author(s):  
B. R. Walker ◽  
B. L. Brizzee

Experiments were performed to examine the role of the arterial baroreceptors in the cardiovascular responses to acute hypoxia and hypercapnia in conscious rats chronically instrumented to monitor systemic hemodynamics. One group of rats remained intact, whereas a second group was barodenervated. Both groups of rats retained arterial chemoreceptive function as demonstrated by augmented ventilation in response to hypoxia. The cardiovascular effects to varying inspired levels of O2 and CO2 were examined and compared between intact and barodenervated rats. No differences between groups were noted in response to mild hypercapnia (5% CO2); however, the bradycardia and reduction in cardiac output observed in intact rats breathing 10% CO2 were eliminated by barodenervation. In addition, hypocapnic hypoxia caused a marked fall in blood pressure and total peripheral resistance (TPR) in barodenervated rats compared with controls. Similar differences in TPR were observed between the groups in response to isocapnic and hypercapnic hypoxia as well. It is concluded that the arterial baroreflex is an important component of the overall cardiovascular responses to both hypercapnic and hypoxic stimuli in the conscious rat.


2021 ◽  
Author(s):  
Burçin Altınbaş ◽  
Gökcen Guvenc Bayram ◽  
Murat Yalcin

Abstract Centrally injected some prostaglandins (PG) and orexin (OX) produce similar cardiovascular responses. We have recently reported that both central cyclooxygenase (COX) and central lipoxygenase (LOX) enzymes mediate the cardiovascular effects of OX. In the current study, we aimed to investigate the mediating effects of thromboxane (TX) A2, PGD, PGE, and PGF2a, as COX pathway subproducts known to be active in cardiovascular control, on cardiovascular responses elicited by OX. Intracerebroventricular (i.c.v.) injection of OX increased cardiovascular levels in normotensive male Sprague Dawley rats. Moreover, central pretreatment with the TXA2 synthesis inhibitor furegrelate, PGF2α receptor antagonist, PGF2α-dimethylamine, PGE, and PGD receptor antagonist AH6809 partially attenuated the centrally administered OX -induced pressor and tachycardic cardiovascular responses in rats. In conclusion, our results show that i.c.v. injection of OX increases blood pressure and heart rate. Moreover, TXA2, PGF2α, PGE, and PGD mediate, at least in part, the centrally applied OX -evoked pressor and tachycardic responses. The results suggest that centrally injected OX -evoked pressor and tachycardia responses may also be mediated by arachidonic acid metabolites other than TXA2, PGF2α, PGE, and PGD.


1997 ◽  
Vol 65 (2) ◽  
pp. 217-224 ◽  
Author(s):  
F. Forcada ◽  
J. M. Lozano ◽  
J. A. Abecia ◽  
L. Zarazaga

AbstractThe role of endogenous opioids and the dopaminergic system on the inhibition of luteinizing hormone (LH) secretion during early and late anoestrus, together with its modulation by the plane of nutrition were investigated in ewes with a short anoestrous season. In early anoestrus (22 March; day 0), two groups of ovariectomized, oestradiol-treated adult Rasa Aragonesa ewes, maintained under natural photoperiod at 41°N, were given enough food to provide 1·4 × (high; H; no. = 6) or 0·5 × (low; L; no. = 6) energy requirements for maintenance. The effects of administration of the opiate receptor antagonist naloxone (1 mg/kg at four 1-h intervals) (day 15) and of the dopaminergic2 receptor antagonist pimozide (0·08 mg/kg) (day 21) on LH secretion were assessed. A second experiment was carried out in late anoestrus (21 June) using the same protocol. A significant increase in LH pulse frequency after naloxone treatment for both H and L groups was detected in late anoestrus. Number ofLH pulses after naloxone injections in early anoestrus also increased in H (P < 0·05) and L ewes (P = 0·08). The effect of pimozide injection on mean LH pulse frequency was greater in early than in late anoestrus, especially in ewes receiving a high plane of nutrition (P < 0·05 and P = 0·07 for H and L ewes, respectively in April and P = 0·07 for H ewes in July). A significant increase of LH pulse amplitude was also detected in early anoestrus in H ewes (P < 0·01). These results provide evidence that endogenous opioid mechanisms are involved in the inhibition ofLH pulsatile release both in early and late anoestrus in ewes with a short seasonal anoestrus. The ability of pimozide to increase LH pulse frequency in early anoestrus could be enhanced by a high plane of nutrition in the breed studied.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Liang-Wu Fu ◽  
Stephanie C. Tjen-A-Looi ◽  
Sherwin Barvarz ◽  
Zhi-Ling Guo ◽  
Shaista Malik

AbstractMyocardial ischemia evokes powerful reflex responses through activation of vagal and sympathetic afferents in the heart through the release of ischemic metabolites. We have demonstrated that extracellular ATP stimulates cardiac sympathetic afferents through P2 receptor-mediated mechanism, and that opioid peptides suppress these afferents’ activity. However, the roles of both P2 receptor and endogenous opioids in cardiac sympathoexcitatory reflex (CSR) responses remain unclear. We therefore hypothesized that activation of cardiac P2 receptor evokes CSR responses by stimulating cardiac sympathetic afferents and these CSR responses are modulated by endogenous opioids. We observed that intrapericardial injection of α,β-methylene ATP (α,β-meATP, P2X receptor agonist), but not ADP (P2Y receptor agonist), caused a graded increase in mean arterial pressure in rats with sinoaortic denervation and vagotomy. This effect of α,β-meATP was abolished by blockade of cardiac neural transmission with intrapericardial procaine treatment and eliminated by intrapericardial A-317491, a selective P2X2/3 and P2X3 receptor antagonist. Intrapericardial α,β-meATP also evoked CSR response in vagus-intact rats. Furthermore, the P2X receptor-mediated CSR responses were enhanced by intrapericardial naloxone, a specific opioid receptor antagonist. These data suggest that stimulation of cardiac P2X2/3 and P2X3, but not P2Y receptors, powerfully evokes CSR responses through activation of cardiac spinal afferents, and that endogenous opioids suppress the P2X receptor-mediated CSR responses.


1995 ◽  
Vol 79 (4) ◽  
pp. 1173-1180 ◽  
Author(s):  
M. R. Eichinger ◽  
T. C. Resta ◽  
D. S. Balderrama ◽  
G. M. Herrera ◽  
L. A. Richardson ◽  
...  

Recent studies from our laboratory have shown that acute and chronic hypoxic exposures are associated with attenuated systemic vasoreactivity in conscious rats. The present studies examined the role of adenosine triphosphate-sensitive potassium channels (KATP channels) in modulating the pressor and vasoconstrictor responses to phenylephrine (PE) in conscious instrumented rats 1) during acute hypoxia or 2) after chronic hypoxic exposure. Mean arterial pressure, mean cardiac output, and total peripheral resistance were assessed before and after graded infusions of PE in both groups of rats under normoxic or hypoxic conditions. Additionally, the role of KATP channels in attenuating vasoreactivity was determined by administration of glibenclamide (KATP channel blocker) before PE infusions. Acute hypoxia (12% O2) was associated with reduced pressor and constrictor responses to PE in control animals. Furthermore, acute return to room air did not restore the pressor and constrictor responses in the chronically hypoxic rats. Glibenclamide infusion did not influence the pressor or vasoconstrictor responses to PE in either group of animals during normoxia or acute hypoxia. Therefore, our data suggest that opening of KATP channels is not involved in the attenuated vasoreactivity associated with acute and chronic hypoxia in the conscious rat.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lucas Gomes-de-Souza ◽  
Willian Costa-Ferreira ◽  
Michelle M. Mendonça ◽  
Carlos H. Xavier ◽  
Carlos C. Crestani

AbstractThe endocannabinoid neurotransmission acting via local CB1 receptor in the bed nucleus of the stria terminalis (BNST) has been implicated in behavioral and physiological responses to emotional stress. However, the neural network related to this control is poorly understood. In this sense, the lateral hypothalamus (LH) is involved in stress responses, and BNST GABAergic neurons densely innervate this hypothalamic nucleus. However, a role of BNST projections to the LH in physiological responses to stress is unknown. Therefore, using male rats, we investigated the role of LH GABAergic neurotransmission in the regulation of cardiovascular responses to stress by CB1 receptors within the BNST. We observed that microinjection of the selective CB1 receptor antagonist AM251 into the BNST decreased the number of Fos-immunoreactive cells within the LH of rats submitted to acute restraint stress. Treatment of the BNST with AM251 also enhanced restraint-evoked tachycardia. Nevertheless, arterial pressure increase and sympathetically-mediated cutaneous vasoconstriction to restraint was not affected by CB1 receptor antagonism within the BNST. The effect of AM251 in the BNST on restraint-evoked tachycardia was abolished in animals pretreated with the selective GABAA receptor antagonist SR95531 in the LH. These results indicate that regulation of cardiovascular responses to stress by CB1 receptors in the BNST is mediated by GABAergic neurotransmission in the LH. Present data also provide evidence of the BNST endocannabinoid neurotransmission as a mechanism involved in LH neuronal activation during stressful events.


Sign in / Sign up

Export Citation Format

Share Document