serotonergic receptor
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 6)

H-INDEX

22
(FIVE YEARS 0)

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259104
Author(s):  
Federico Camicia ◽  
Hugo R. Vaca ◽  
Sang-Kyu Park ◽  
Augusto E. Bivona ◽  
Ariel Naidich ◽  
...  

Cestodes are platyhelminth parasites with a wide range of hosts that cause neglected diseases. Neurotransmitter signaling is of critical importance for these parasites which lack circulatory, respiratory and digestive systems. For example, serotonin (5-HT) and serotonergic G-protein coupled receptors (5-HT GPCRs) play major roles in cestode motility, development and reproduction. In previous work, we deorphanized a group of 5-HT7 type GPCRs from cestodes. However, little is known about another type of 5-HT GPCR, the 5-HT1 clade, which has been studied in several invertebrate phyla but not in platyhelminthes. Three putative 5-HT GPCRs from Echinococcus canadensis, Mesocestoides vogae (syn. M. corti) and Hymenolepis microstoma were cloned, sequenced and bioinformatically analyzed. Evidence grouped these new sequences within the 5-HT1 clade of GPCRs but differences in highly conserved GPCR motifs were observed. Transcriptomic analysis, heterologous expression and immunolocalization studies were performed to characterize the E. canadensis receptor, called Eca-5-HT1a. Functional heterologous expression studies showed that Eca-5-HT1a is highly specific for serotonin. 5-Methoxytryptamine and α-methylserotonin, both known 5-HT GPCR agonists, give stimulatory responses whereas methysergide, a known 5-HT GPCR ligand, give an antagonist response in Eca-5-HT1a. Mutants obtained by the substitution of key predicted residues resulted in severe impairment of receptor activity, confirming that indeed, these residues have important roles in receptor function. Immunolocalization studies on the protoscolex stage from E. canadensis, showed that Eca-5-HT1a is localized in branched fibers which correspond to the nervous system of the parasite. The patterns of immunoreactive fibers for Eca-5-HT1a and for serotonin were intimately intertwined but not identical, suggesting that they are two separate groups of fibers. These data provide the first functional, pharmacological and localization report of a serotonergic receptor that putatively belongs to the 5-HT1 type of GPCRs in cestodes. The serotonergic GPCR characterized here may represent a new target for antiparasitic intervention.


2021 ◽  
Vol 43 (3) ◽  
pp. 1805-1827
Author(s):  
Munazzah Tasleem ◽  
Abdulwahed Alrehaily ◽  
Tahani M. Almeleebia ◽  
Mohammad Y. Alshahrani ◽  
Irfan Ahmad ◽  
...  

The use of pharmaceuticals to treat Major Depressive Disorder (MDD) has several drawbacks, including severe side effects. Natural compounds with great efficacy and few side effects are in high demand due to the global rise in MDD and ineffective treatment. Yohimbine, a natural compound, has been used to treat various ailments, including neurological conditions, since ancient times. Serotonergic neurotransmission plays a crucial role in the pathogenesis of depression; thus, serotonergic receptor agonist/antagonistic drugs are promising anti-depressants. Yohimbine was investigated in this study to determine its antidepressant activity using molecular docking and pharmacokinetic analyses. Additionally, the in silico mutational study was carried out to understand the increase in therapeutic efficiency using site-directed mutagenesis. Conformational changes and fluctuations occurring during wild type and mutant serotonergic receptor, 5-hydroxytryptamine receptors 1A (5HT1A) and yohimbine were assessed by molecular dynamics MD simulation studies. Yohimbine was found to satisfy all the parameters for drug-likeness and pharmacokinetics analysis. It was found to possess a good dock score and hydrogen-bond interactions with wild type 5HT1A structure. Our findings elaborate the substantial efficacy of yohimbine against MDD; however, further bench work studies may be carried out to prove the same.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Milan Dieris ◽  
Daniel Kowatschew ◽  
Sigrun I. Korsching

AbstractOlfactory receptor families have arisen independently several times during evolution. The origin of taar genes, one of the four major vertebrate olfactory receptor families, is disputed. We performed a phylogenetic analysis making use of 96 recently available genomes, and report that olfactory functionality has arisen twice independently within the TAAR family, once in jawed and once in jawless fish. In lamprey, an ancestral gene expanded to generate a large family of olfactory receptors, while the sister gene in jawed vertebrates did not expand and is not expressed in olfactory sensory neurons. Both clades do not exhibit the defining TAAR motif, and we suggest naming them taar-like receptors (tarl). We have identified the evolutionary origin of both taar and tarl genes in a duplication of the serotonergic receptor 4 that occurred in the most recent common ancestor of vertebrates. We infer two ancestral genes in bony fish (TAAR12, TAAR13) which gave rise to the complete repertoire of mammalian olfactory taar genes and to class II of the taar repertoire of teleost fish. We follow their evolution in seventy-one bony fish genomes and report a high evolutionary dynamic, with many late gene birth events and both early and late gene death events.


Author(s):  
M. Kermorgant ◽  
A. Pavy-Le Traon ◽  
J. M. Senard ◽  
D. N. Arvanitis

Sign in / Sign up

Export Citation Format

Share Document