Inhibition of hypoxia/reoxygenation-induced apoptosis in metallothionein-overexpressing cardiomyocytes

2001 ◽  
Vol 280 (5) ◽  
pp. H2292-H2299 ◽  
Author(s):  
Guang-Wu Wang ◽  
Zhanxiang Zhou ◽  
Jon B. Klein ◽  
Y. James Kang

To study possible mechanisms for metallothionein (MT) inhibition of ischemia-reperfusion-induced myocardial injury, cardiomyocytes isolated from MT-overexpressing transgenic neonatal mouse hearts and nontransgenic controls were subjected to 4 h of hypoxia (5% CO2-95% N2, glucose-free modified Tyrode's solution) followed by 1 h of reoxygenation in MEM + 20% fetal bovine serum (FBS) (5% CO2-95% air), and cytochrome c-mediated caspase-3 activation apoptotic pathway was determined. Hypoxia/reoxygenation-induced apoptosis was significantly suppressed in MT-overexpressing cardiomyocytes, as measured by both terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphosphate nick-end labeling and annexin V-FITC binding. In association with apoptosis, mitochondrial cytochrome c release, as determined by Western blot, was observed to occur in nontransgenic cardiomyocytes. Correspondingly, caspase-3 was activated as determined by laser confocal microscopic examination with the use of FITC-conjugated antibody against active caspase-3 and by enzymatic assay. The activation of this apoptotic pathway was significantly inhibited in MT-overexpressing cells, as evidenced by both suppression of cytochrome c release and inhibition of caspase-3 activation. The results demonstrate that MT suppresses hypoxia/reoxygenation-induced cardiomyocyte apoptosis through, at least in part, inhibition of cytochrome c-mediated caspase-3 activation.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
JungKwon Lee ◽  
Jesusa L. Rosales ◽  
Hee-Guk Byun ◽  
Ki-Young Lee

AbstractThe search continues for improved therapy for acute lymphoblastic leukemia (aLL), the most common malignancy in children. Recently, d,l-methadone was put forth as sensitizer for aLL chemotherapy. However, the specific target of d,l-methadone in leukemic cells and the mechanism by which it induces leukemic cell apoptosis remain to be defined. Here, we demonstrate that d,l-methadone induces leukemic cell apoptosis through activation of the mu1 subtype of opioid receptors (OPRM1). d,l-Methadone evokes IP3R-mediated ER Ca2+ release that is inhibited by OPRM1 loss. In addition, the rate of Ca2+ extrusion following d,l-methadone treatment is reduced, but is accelerated by loss of OPRM1. These d,l-methadone effects cause a lethal rise in [Ca2+]i that is again inhibited by OPRM1 loss, which then prevents d,l-methadone-induced apoptosis that is associated with activation of calpain-1, truncation of Bid, cytochrome C release, and proteolysis of caspase-3/12. Chelating intracellular Ca2+ with BAPTA-AM reverses d,l-methadone-induced apoptosis, establishing a link between the rise in [Ca2+]i and d,l-methadone-induced apoptosis. Altogether, our findings point to OPRM1 as a specific target of d,l-methadone in leukemic cells, and that OPRM1 activation by d,l-methadone disrupts IP3R-mediated ER Ca2+ release and rate of Ca2+ efflux, causing a rise in [Ca2+]i that upregulates the calpain-1-Bid-cytochrome C-caspase-3/12 apoptotic pathway.


2007 ◽  
Vol 292 (1) ◽  
pp. G28-G38 ◽  
Author(s):  
Yanna Cao ◽  
Lu Chen ◽  
Weili Zhang ◽  
Yan Liu ◽  
Harry T. Papaconstantinou ◽  
...  

Transforming growth factor (TGF)-β-dependent apoptosis is important in the elimination of damaged or abnormal cells from normal tissues in vivo. Previously, we have shown that TGF-β inhibits the growth of rat intestinal epithelial (RIE)-1 cells. However, RIE-1 cells are relatively resistant to TGF-β-induced apoptosis due to a low endogenous Smad3-to-Akt ratio. Overexpression of Smad3 sensitizes RIE-1 cells (RIE-1/Smad3) to TGF-β-induced apoptosis by altering the Smad3-to-Akt ratio in favor of apoptosis. In this study, we utilized a genomic approach to identify potential downstream target genes that are regulated by TGF-β/Smad3. Total RNA samples were analyzed using Affymetrix oligonucleotide microarrays. We found that TGF-β regulated 518 probe sets corresponding to its target genes. Interestingly, among the known apoptotic genes included in the microarray analyses, only caspase-3 was induced, which was confirmed by real-time RT-PCR. Furthermore, TGF-β activated caspase-3 through protein cleavage. Upstream of caspase-3, TGF-β induced mitochondrial depolarization, cytochrome c release, and cleavage of caspase-9, which suggests that the intrinsic apoptotic pathway mediates TGF-β-induced apoptosis in RIE-1/Smad3 cells.


2003 ◽  
Vol 284 (5) ◽  
pp. G821-G829 ◽  
Author(s):  
Wenlin Deng ◽  
De-An Wang ◽  
Elvira Gosmanova ◽  
Leonard R. Johnson ◽  
Gabor Tigyi

We previously showed ( Gastroenterology 123: 206–216, 2002) that lysophosphatidic acid (LPA) protects and rescues rat intestinal epithelial cells (IEC-6) from apoptosis. Here, we provide evidence for the LPA-elicited inhibition of the mitochondrial apoptotic pathway leading to attenuation of caspase-3 activation. Pretreatment of IEC-6 cells with LPA inhibited campothecin-induced caspase-9 and caspase-3 activation and DNA fragmentation. A caspase-9 inhibitor peptide mimicked the LPA-elicited antiapoptotic activity. LPA elicited ERK1/ERK2 and PKB/Akt phosphorylation. The LPA-elicited antiapoptotic activity and inhibition of caspase-9 activity were abrogated by pertussis toxin, PD 98059, wortmannin, and LY 294002. LPA reduced cytochrome c release from mitochondria and prevented activation of caspase-9. LPA prevented translocation of Bax from cytosol to mitochondria and increased the expression of the antiapoptotic Bcl-2 mRNA and protein. LPA had no effect on Bcl-xl, Bad, and Bak mRNA or protein expression. These data indicate that LPA protects IEC-6 cells from camptothecin-induced apoptosis through Gi-coupled inhibition of caspase-3 activation mediated by the attenuation of caspase-9 activation due to diminished cytochrome c release, involving upregulation of Bcl-2 protein expression and prevention of Bax translocation.


2010 ◽  
Vol 38 (02) ◽  
pp. 373-386 ◽  
Author(s):  
Qin Hu ◽  
Ruile Pan ◽  
Liwei Wang ◽  
Bo Peng ◽  
Jingtian Tang ◽  
...  

Platycodon grandiflorum (Jacq.) A. DC., a Chinese food and medicine, has been used as expectorant traditionally. The present study aimed to investigate the effect of Platycodon grandiflorum extract (PGE) on SKOV3 ovarian cancer cells. 3-(4,5- dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay was used to monitor cell numbers, Annexin-V/propidium iodide (PI) staining, RT-PCR and Western blot were used to examine cell apoptosis, caspases activation. Bcl-2 and Bax expressions and mitochondrial cytochrome c release. Our result showed that PGE-induced apoptosis was associated with activation of caspase-3, -8 and -9, down-regulation of Bcl-2, up-regulation of Bax and release of mitochondrial cytochrome c to cytosol. The data indicate that PGE may have anti-tumor effect mainly via caspase-3 and caspase-9 dependent apoptotic pathway.


2007 ◽  
Vol 77 (1) ◽  
pp. 129-134 ◽  
Author(s):  
Cristina C. Teixeira ◽  
Aida P. Padron Costas ◽  
Yelena Nemelivsky

Abstract Objective: To determine the role of mitochondria in chondrocyte apoptosis induced by inorganic phosphate (Pi). Materials and Methods: Chondrocytes isolated from the growth plates of chick embryo tibia were treated with Pi in serum-free media; chondrocyte viability, mitochondrial membrane potential, cytochrome c release from mitochondria, caspase 3 activity, endonuclease activity, and DNA fragmentation were investigated. Results: Exposure to Pi for 24 hours induced apoptosis in growth plate chondrocytes through a pathway that involved loss of mitochondrial function, release of cytochrome c into the cytoplasm, increases in caspase 3 and endonuclease activities, and fragmentation of DNA. Conclusions: This study suggests that mitochondria are important players in Pi-induced apoptosis.


2002 ◽  
Vol 282 (6) ◽  
pp. C1290-C1297 ◽  
Author(s):  
Qing Yuan ◽  
Ramesh M. Ray ◽  
Leonard R. Johnson

C1297, 2002; 10.1152/ajpcell.00351.2001.We have shown previously that depletion of polyamines delays apoptosis induced by camptothecin in rat intestinal epithelial cells (IEC-6). Mitochondria play an important role in the regulation of apoptosis in mammalian cells because apoptotic signals induce mitochondria to release cytochrome c. The latter interacts with Apaf-1 to activate caspase-9, which in turn activates downstream caspase-3. Bcl-2 family proteins are involved in the regulation of cytochrome c release from mitochondria. In this study, we examined the effects of polyamine depletion on the activation of the caspase cascade, release of cytochrome cfrom mitochondria, and expression and translocation of Bcl-2 family proteins. We inhibited ornithine decarboxylase, the first rate-limiting enzyme in polyamine synthesis, with α-difluoromethylornithine (DFMO) to deplete cells of polyamines. Depletion of polyamines prevented camptothecin-induced release of cytochrome c from mitochondria and decreased the activity of caspase-9 and caspase-3. The mitochondrial membrane potential was not disrupted when cytochrome c was released. Depletion of polyamines decreased translocation of Bax to mitochondria during apoptosis. The expression of antiapoptotic proteins Bcl-xL and Bcl-2 was increased in DFMO-treated cells. Caspase-8 activity and cleavage of Bid were decreased in cells depleted of polyamines. These results suggest that polyamine depletion prevents IEC-6 cells from apoptosis by preventing the translocation of Bax to mitochondria, thus preventing the release of cytochrome c.


2001 ◽  
Vol 281 (4) ◽  
pp. G1115-G1123 ◽  
Author(s):  
Junpei Soeda ◽  
Shinichi Miyagawa ◽  
Kenji Sano ◽  
Junya Masumoto ◽  
Shun'Ichiro Taniguchi ◽  
...  

Apoptosis plays an important role in liver ischemia and reperfusion (I/R) injury. However, the molecular basis of apoptosis in I/R injury is poorly understood. The aims of this study were to ascertain when and how apoptotic signal transduction occurs in I/R injury. The apoptotic pathway in rats undergoing 90 min of warm ischemia with reperfusion was compared with that of rats undergoing prolonged ischemia alone. During ischemia, mitochondrial cytochrome c was released into the cytosol in a time-dependent manner in hepatocytes and sinusoidal endothelial cells, and caspase-3 and an inhibitor of caspase-activated DNase were cleaved. However, apoptotic manifestation and DNA fragmentation were not observed. After reperfusion, nuclear condensation, cells positive for terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling, and DNA fragmentation were observed and caspase-8 and Bid cleavage occurred. In contrast, prolonged ischemia alone induced necrosis rather than apoptosis. In summary, our results show that release of mitochondrial cytochrome c and caspase activation proceed during ischemia, although apoptosis is manifested after reperfusion.


Sign in / Sign up

Export Citation Format

Share Document