Stimulated amino acid imbalance and histidine transport in rat brain slices

1975 ◽  
Vol 229 (1) ◽  
pp. 229-234 ◽  
Author(s):  
J Lutz ◽  
JK Tews ◽  
AE Harper

Histidine concentration in the brain decreases rapidly when rats are fed a low protein diet in which an amino acid imbalance is created by addition of an amino acid mixture devoid of histidine. Competition for histidine transport into the brain was suggested as an explanation for this effect. Therefore, animo acid mixtures simulating composition of plasma from rats fed basal or histidine-imbalanced diets were added to media to evaluate their effects on uptake of histidine by brain slices during a 60-min incubation period. At the concentrations actually found in plasma, the unbalanced mixture decreased histidine uptake significantly more than did the basal mixture. Two distinct inhibition patterns were observed with different groups of amino acids: a linear decrease in histidine uptake with a mixture of the small neutral, hydroxyl, basic, and acidic amino acids, and a hyperbolic decrease with a mixture of large neutral amino acids, and a hyperbolic decrease with a mixture of large neutral amino acids. Inhibition of histidine transport by the complete mixtures reflected these two effects. Plasma patterns and concentrations of competitive amino acids as well as the concentration of histidine appear to be factors involved in decreasing histidine transport into the brain.

1973 ◽  
Vol 45 (3) ◽  
pp. 291-299 ◽  
Author(s):  
D. B. A. Silk ◽  
D. Perrett ◽  
M. L. Clark

1. A double lumen perfusion technique has been used in man to study the absorption of the two neutral amino acids glycine and l-alanine from the two dipeptides, l-alanylglycine and glycyl-l-alanine and from an equivalent amino acid mixture. 2. Glycine was absorbed faster from the dipeptides than from the equivalent amino acid mixture, and the difference in absorption rates of glycine and alanine seen when the equimolar mixture of the amino acids was perfused, was abolished when either dipeptide was perfused. This suggests that dipeptides are taken up by the mucosal cell by a mechanism independent of the amino acid-transport system. 3. The presence of free amino acids in the lumen during perfusion of both dipeptides suggests that hydrolysis occurs at some stage in the uptake process. Intraluminal hydrolysis was insufficient to account for the concentration of the amino acids seen, and their presence is thought to be due to hydrolysis of the dipeptides at the brush border. 4. It is suggested that these results confirm that at least two modes of peptide absorption occur simultaneously, namely, direct peptide uptake, and peptide hydrolysis with subsequent absorption of the released amino acids by the amino acid transport system.


1978 ◽  
Vol 29 (6) ◽  
pp. 1263 ◽  
Author(s):  
AR Egan ◽  
QR Rogers

In a series of 14 experiments young Merino x Dorset Horn or Merino x Suffolk wethers were fed on wheaten straw or wheaten hay supplemented with a mineral mixture and, in some cases, urea and/or molasses. The diets were contrived to provide between 8 and 12% of digestible energy as protein digested in the intestines. A mixture of amino acids estimated to provide suitable proportions of essential amino acids and adequate non-essential amino acids was developed. With each diet, either the complete amino acid mixture, or a mixture from which one essential amino acid was excluded (imbalanced mixture), was infused per abomasum. In several experiments feed intake was depressed by imbalanced mixtures in which methionine, threonine, isoleucine and lysine were the respective deletions from the mixture, but was elevated by the infusion of the complete amino acid mixture. In each experiment an imbalanced infusion resulted in a decrease in plasma concentration of that amino acid excluded from the mixture to levels only 15–50% of control (pre-infusion) levels. All other essential amino acids were increased in concentration in plasma, reaching 1.5 to 6 times the concentrations in pre-infusion conditions. Infusions of greater amounts of amino acids resulted in greater changes in the plasma amino acid concentration. These results indicated that, although ruminant lambs ingesting herbage diets are unlikely to be subjected to an effective amino acid imbalance, they have the physiological capacity to respond to amino acid imbalances. This needs to be considered when rumen bypass of amino acids or proteins is being considered in practical or experimental circumstances.


1982 ◽  
Vol 206 (2) ◽  
pp. 407-414 ◽  
Author(s):  
P Binek-Singer ◽  
T C Johnson

A prolonged elevation in the concentrations of circulating phenylalanine was maintained in newborn mice by daily injections of phenylalanine and a phenylalanine hydroxylase inhibitor, alpha-methylphenylalanine. The result of this chronic hyperphenylalaninaemia was an accumulation of vacant or inactive monoribosomes that persisted for 18 h of each day. An elongation assay in vitro with brain postmitochondrial supernatants demonstrated that, in addition, there was an equally prolonged decrease in the rates of polypeptide-chain elongation by the remaining brain polyribosomes. Analyses of the free amino acid composition in the brains of hyperphenylalaninaemic mice showed a loss of several amino acids from the brain, particularly the large, neutral amino acids, which are co- or counter-transported across plasma membranes with phenylalanine. When a mixture of these amino acids (leucine, isoleucine, valine, threonine, tryptophan, tyrosine, methionine) was injected into hyperphenylalaninaemic mice, there was an immediate cessation of monoribosome accumulation in the brain and there was no inhibition of the rates of polypeptide-chain elongation. Although the concentrations of the large, neutral amino acids in the brain were partially preserved by treatment of hyperphenylalaninaemic mice with the amino acid mixture, the elevated concentrations of phenylalanine remained unaltered. The amino acid mixture had no detectable effect on brain protein synthesis in the absence of the hyperphenylalaninaemic condition.


1963 ◽  
Vol 204 (4) ◽  
pp. 686-690 ◽  
Author(s):  
Juan C. Sanahuja ◽  
Alfred E. Harper

Effects of a dietary imbalance of amino acids on the plasma amino acid pattern of the protein-depleted rat are described. The amino acid imbalance was created by adding a mixture of indispensable amino acids lacking histidine to a diet in which the protein was provided by 6% of beef blood fibrin. The addition of this amino acid mixture was previously shown to cause depressions in growth and food intake. In the present study the depression in food intake was preceded by a fall in plasma histidine concentration and at the same time the concentrations of some of the other indispensable amino acids, especially threonine, began to rise. The ratios of several indispensable amino acids to histidine in the plasma were elevated when food intake was most severely depressed.


1983 ◽  
Vol 245 (4) ◽  
pp. R556-R563 ◽  
Author(s):  
J. K. Tews ◽  
A. E. Harper

Transport of histidine, valine, or lysine into rat brain slices and across the blood-brain barrier (BBB) was determined in the presence of atypical nonprotein amino acids. Competitors of histidine and valine transport in slices were large neutral amino acids including norleucine, norvaline, alpha-aminooctanoate, beta-methylphenylalanine, and alpha-aminophenylacetate. Less effective were aromatic amino acids with ring substituents; ineffective were basic amino acids and omega-amino isomers of norleucine and aminooctanoate. Lysine transport was moderately depressed by homoarginine or ornithine plus arginine; large neutral amino acids were also similarly inhibitory. Histidine or valine transport across the BBB was also strongly inhibited by large neutral amino acids that were the most effective competitors in the slices (norvaline, norleucine, alpha-aminooctanoate, and alpha-aminophenylacetate); homoarginine and 8-aminooctanoate were ineffective. Homoarginine, ornithine, and arginine almost completely blocked lysine transport, but the large neutral amino acids were barely inhibitory. When rats were fed a single meal containing individual atypical large neutral amino acids or homoarginine, brain pools of certain large neutral amino acids or of arginine and lysine, respectively, were depleted.


2015 ◽  
Vol 114 (11) ◽  
pp. 1845-1851 ◽  
Author(s):  
Yean Yean Soong ◽  
Joseph Lim ◽  
Lijuan Sun ◽  
Christiani Jeyakumar Henry

AbstractConsumption of high glycaemic index (GI) and glycaemic response (GR) food such as white rice has been implicated in the development of type 2 diabetes. Previous studies have reported the ability of individual amino acids to reduce GR of carbohydrate-rich foods. Because of the bitter flavour of amino acids, they have rarely been used to reduce GR. We now report the use of a palatable, preformed amino acid mixture in the form of essence of chicken. In all, sixteen healthy male Chinese were served 68 or 136 ml amino acid mixture together with rice, or 15 or 30 min before consumption of white rice. Postprandial blood glucose and plasma insulin concentrations were measured at fasting and every 15 min after consumption of the meal until 60 min after the consumption of the white rice. Subsequent blood samples were taken at 30-min intervals until 210 min. The co-ingestion of 68 ml of amino acid mixture with white rice produced the best results in reducing the peak blood glucose and GR of white rice without increasing the insulinaemic response. It is postulated that amino acid mixtures prime β-cell insulin secretion and peripheral tissue uptake of glucose. The use of ready-to-drink amino acid mixtures may be a useful strategy for lowering the high-GI rice diets consumed in Asia.


1980 ◽  
Vol 239 (6) ◽  
pp. G493-G496 ◽  
Author(s):  
E. J. Feldman ◽  
M. I. Grossman

Using intragastric titration in dogs with gastric fistulas, dose-response studies were carried out with liver extract and with a mixture of amino acids that matched the free amino acids found in liver extract. All solutions were adjusted to pH 7.0 and osmolality to 290 mosmol x kg-1. Doses are expressed as the sum of the concentrations of all free amino acids. At each dose studied (free amino acid concentration: 2.8, 5.6, 11, 23, and 45 mM), acid secretion in response to the free amino acid mixture was not significantly different from that of liver extract. The peak response to both liver extract and the free amino acid mixture occurred with the 23-mM dose and represented about 60% of the maximal response to histamine. The serum concentrations of gastrin after liver extract and the amino acid mixture were not significantly different. It is concluded that in dogs with gastric fistula, gastric acid secretion and release of gastrin were not significantly different in response to liver extract and to a mixture of amino acids that simulated the free amino acid content of liver extract.


1997 ◽  
Vol 273 (1) ◽  
pp. E122-E129 ◽  
Author(s):  
G. Biolo ◽  
K. D. Tipton ◽  
S. Klein ◽  
R. R. Wolfe

Six normal untrained men were studied during the intravenous infusion of a balanced amino acid mixture (approximately 0.15 g.kg-1.h-1 for 3 h) at rest and after a leg resistance exercise routine to test the influence of exercise on the regulation of muscle protein kinetics by hyperaminoacidemia. Leg muscle protein kinetics and transport of selected amino acids (alanine, phenylalanine, leucine, and lysine) were isotopically determined using a model based on arteriovenous blood samples and muscle biopsy. The intravenous amino acid infusion resulted in comparable increases in arterial amino acid concentrations at rest and after exercise, whereas leg blood flow was 64 +/- 5% greater after exercise than at rest. During hyperaminoacidemia, the increases in amino acid transport above basal were 30-100% greater after exercise than at rest. Increases in muscle protein synthesis were also greater after exercise than at rest (291 +/- 42% vs. 141 +/- 45%). Muscle protein breakdown was not significantly affected by hyperminoacidemia either at rest or after exercise. We conclude that the stimulatory effect of exogenous amino acids on muscle protein synthesis is enhanced by prior exercise, perhaps in part because of enhanced blood flow. Our results imply that protein intake immediately after exercise may be more anabolic than when ingested at some later time.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 4012
Author(s):  
Iris Scala ◽  
Daniela Concolino ◽  
Anna Nastasi ◽  
Giulia Esposito ◽  
Daniela Crisci ◽  
...  

The mainstay of phenylketonuria treatment is a low protein diet, supplemented with phenylalanine (Phe)-free protein substitutes and micronutrients. Adhering to this diet is challenging, and even patients with good metabolic control who follow the dietary prescriptions in everyday life ignore the recommendations occasionally. The present study explores the ability of slow-release large neutral amino acids (srLNAAs) to prevent Phe increase following a Phe dietary load. Fourteen phenylketonuric patients aged ≥13 years were enrolled in a 6-week protocol. Oral acute Phe loads of 250 and 500 mg were added to the evening meal together with srLNAAs (0.5 gr/kg). Phe and tyrosine were dosed before dinner, 2h-after dinner, and after the overnight fast. After oral Phe loads, mean plasma Phe remained stable and below 600 µmol/L. No Phe peaks were registered. Tyrosine levels significantly increased, and Phe/Tyrosine ratio decreased. No adverse events were registered. In conclusion, a single oral administration of srLNAAs at the dose of 0.5 gr/kg is effective in maintaining stable plasma Phe during acute oral loads with Phe-containing food and may be added to the dietetic scheme in situations in which patients with generally good adherence to diet foresee a higher than prescribed Phe intake due to their commitments.


Sign in / Sign up

Export Citation Format

Share Document