scholarly journals Strong correlation between air-liquid interface cultures and in vivo transcriptomics of nasal brush biopsy

2020 ◽  
Vol 318 (5) ◽  
pp. L1056-L1062 ◽  
Author(s):  
Baishakhi Ghosh ◽  
Bongsoo Park ◽  
Debarshi Bhowmik ◽  
Kristine Nishida ◽  
Molly Lauver ◽  
...  

Air-liquid interface (ALI) cultures are ex vivo models that are used extensively to study the epithelium of patients with chronic respiratory diseases. However, the in vitro conditions impose a milieu different from that encountered in the patient in vivo, and the degree to which this alters gene expression remains unclear. In this study we employed RNA sequencing to compare the transcriptome of fresh brushings of nasal epithelial cells with that of ALI-cultured epithelial cells from the same patients. We observed a strong correlation between cells cultured at the ALI and cells obtained from the brushed nasal epithelia: 96% of expressed genes showed similar expression profiles, although there was greater similarity between the brushed samples. We observed that while the ALI model provides an excellent representation of the in vivo airway epithelial transcriptome for mechanistic studies, several pathways are affected by the change in milieu.

Blood ◽  
2010 ◽  
Vol 116 (15) ◽  
pp. e66-e73 ◽  
Author(s):  
Chih-Wen Ni ◽  
Haiwei Qiu ◽  
Amir Rezvan ◽  
Kihwan Kwon ◽  
Douglas Nam ◽  
...  

Abstract Recently, we showed that disturbed flow caused by a partial ligation of mouse carotid artery rapidly induces atherosclerosis. Here, we identified mechanosensitive genes in vivo through a genome-wide microarray study using mouse endothelial RNAs isolated from the flow-disturbed left and the undisturbed right common carotid artery. We found 62 and 523 genes that changed significantly by 12 hours and 48 hours after ligation, respectively. The results were validated by quantitative polymerase chain reaction for 44 of 46 tested genes. This array study discovered numerous novel mechanosensitive genes, including Lmo4, klk10, and dhh, while confirming well-known ones, such as Klf2, eNOS, and BMP4. Four genes were further validated for protein, including LMO4, which showed higher expression in mouse aortic arch and in human coronary endothelium in an asymmetric pattern. Comparison of in vivo, ex vivo, and in vitro endothelial gene expression profiles indicates that numerous in vivo mechanosensitive genes appear to be lost or dysregulated during culture. Gene ontology analyses show that disturbed flow regulates genes involved in cell proliferation and morphology by 12 hours, followed by inflammatory and immune responses by 48 hours. Determining the functional importance of these novel mechanosensitive genes may provide important insights into understanding vascular biology and atherosclerosis.


2018 ◽  
Vol 129 (6) ◽  
pp. 1446-1455 ◽  
Author(s):  
Markus M. Luedi ◽  
Sanjay K. Singh ◽  
Jennifer C. Mosley ◽  
Islam S. A. Hassan ◽  
Masumeh Hatami ◽  
...  

OBJECTIVEDexamethasone, a known regulator of mesenchymal programming in glioblastoma (GBM), is routinely used to manage edema in GBM patients. Dexamethasone also activates the expression of genes, such as CEBPB, in GBM stem cells (GSCs). However, the drug’s impact on invasion, proliferation, and angiogenesis in GBM remains unclear. To determine whether dexamethasone induces invasion, proliferation, and angiogenesis in GBM, the authors investigated the drug’s impact in vitro, in vivo, and in clinical information derived from The Cancer Genome Atlas (TCGA) cohort.METHODSExpression profiles of patients from the TCGA cohort with mesenchymal GBM (n = 155) were compared with patients with proneural GBM by comparative marker selection. To obtain robust data, GSCs with IDH1 wild-type (GSC3) and with IDH1 mutant (GSC6) status were exposed to dexamethasone in vitro and in vivo and analyzed for invasion (Boyden chamber, human-specific nucleolin), proliferation (Ki-67), and angiogenesis (CD31). Ex vivo tumor cells from dexamethasone-treated and control mice were isolated by fluorescence activated cell sorting and profiled using Affymetrix chips for mRNA (HTA 2.0) and microRNAs (miRNA 4.0). A pathway analysis was performed to identify a dexamethasone-regulated gene signature, and its relationship with overall survival (OS) was assessed using Kaplan-Meier analysis in the entire GBM TCGA cohort (n = 520).RESULTSThe mesenchymal subgroup, when compared with the proneural subgroup, had significant upregulation of a dexamethasone-regulated gene network, as well as canonical pathways of proliferation, invasion, and angiogenesis. Dexamethasone-treated GSC3 demonstrated a significant increase in invasion, both in vitro and in vivo, whereas GSC6 demonstrated a modest increase. Furthermore, dexamethasone treatment of both GSC3 and GSC6 lines resulted in significantly elevated cell proliferation and angiogenesis in vivo. Patients with mesenchymal GBM had significant upregulation of dexamethasone-regulated pathways when compared with patients with proneural GBM. A prognostic (p = 0.0007) 33-gene signature was derived from the ex vivo expression profile analyses and used to dichotomize the entire TCGA cohort by high (median OS 12.65 months) or low (median OS 14.91 months) dexamethasone signature.CONCLUSIONSThe authors present evidence that furthers the understanding of the complex effects of dexamethasone on biological characteristics of GBM. The results suggest that the drug increases invasion, proliferation, and angiogenesis in human GSC-derived orthotopic tumors, potentially worsening GBM patients’ prognoses. The authors believe that careful investigation is needed to determine how to minimize these deleterious dexamethasone-associated side effects in GBM.


2020 ◽  
Vol 318 (6) ◽  
pp. L1158-L1164
Author(s):  
Emily Mavin ◽  
Bernard Verdon ◽  
Sean Carrie ◽  
Vinciane Saint-Criq ◽  
Jason Powell ◽  
...  

Shifts in cellular metabolic phenotypes have the potential to cause disease-driving processes in respiratory disease. The respiratory epithelium is particularly susceptible to metabolic shifts in disease, but our understanding of these processes is limited by the incompatibility of the technology required to measure metabolism in real-time with the cell culture platforms used to generate differentiated respiratory epithelial cell types. Thus, to date, our understanding of respiratory epithelial metabolism has been restricted to that of basal epithelial cells in submerged culture, or via indirect end point metabolomics readouts in lung tissue. Here we present a novel methodology using the widely available Seahorse Analyzer platform to monitor real-time changes in the cellular metabolism of fully differentiated primary human airway epithelial cells grown at air-liquid interface (ALI). We show increased glycolytic, but not mitochondrial, ATP production rates in response to physiologically relevant increases in glucose availability. We also show that pharmacological inhibition of lactate dehydrogenase is able to reduce glucose-induced shifts toward aerobic glycolysis. This method is timely given the recent advances in our understanding of new respiratory epithelial subtypes that can only be observed in vitro through culture at ALI and will open new avenues to measure real-time metabolic changes in healthy and diseased respiratory epithelium, and in turn the potential for the development of novel therapeutics targeting metabolic-driven disease phenotypes.


2010 ◽  
Vol 299 (3) ◽  
pp. L312-L322 ◽  
Author(s):  
Isabelle Métrailler-Ruchonnet ◽  
Alessandra Pagano ◽  
Stéphanie Carnesecchi ◽  
Karim Khatib ◽  
Pedro Herrera ◽  
...  

Bcl-2 is an anti-apoptotic molecule preventing oxidative stress damage and cell death. We have previously shown that Bcl-2 is able to prevent hyperoxia-induced cell death when overexpressed in a murine fibrosarcoma cell line L929. We hypothesized that its specific overexpression in pulmonary epithelial type II cells could prevent hyperoxia-induced lung injury by protecting the epithelial side of the alveolo-capillary barrier. In the present work, we first showed that in vitro Bcl-2 can rescue murine pulmonary epithelial cells (MLE12) from oxygen-induced cell apoptosis, as shown by analysis of LDH release, annexin V/propidium staining, and caspase-3 activity. We then generated transgenic mice overexpressing specifically Bcl-2 in lung epithelial type II cells under surfactant protein C (SP-C) promoter (Tg-Bcl-2) and exposed them to hyperoxia. Bcl-2 did not hinder hyperoxia-induced mitochondria and DNA oxidative damage of type II cell in vivo. Accordingly, lung damage was identical in both Tg-Bcl-2 and littermate mice strains, as measured by lung weight, bronchoalveolar lavage, and protein content. Nevertheless, we observed a significant lower number of TUNEL-positive cells in type II cells isolated from Tg-Bcl-2 mice exposed to hyperoxia compared with cells isolated from littermate mice. In summary, these results show that although Bcl-2 overexpression is able to prevent hyperoxia-induced cell death at single cell level in vitro and ex vivo, it is not sufficient to prevent cell death of parenchymal cells and to protect the lung from acute damage in mice.


Author(s):  
Debbie Clements ◽  
Suzanne Miller ◽  
Roya Babaei-Jadidi ◽  
Mike Adam ◽  
S. Steven Potter ◽  
...  

Lymphangioleiomyomatosis (LAM) is a female specific cystic lung disease in which TSC2 deficient LAM cells, LAM-Associated Fibroblasts (LAFs) and other cell types infiltrate the lungs. LAM lesions can be associated with type II alveolar epithelial cells (AT2 cells). We hypothesised that the behaviour of AT2 cells in LAM is influenced locally by LAFs. We tested this hypothesis in patient samples and in vitro. In human LAM lung, nodular AT2 cells show enhanced proliferation when compared to parenchymal AT2 cells, demonstrated by increased Ki67 expression. Further, nodular AT2 cells express proteins associated with epithelial activation in other disease states including Matrix Metalloproteinase 7, and Fibroblast Growth Factor 7 (FGF7). In vitro, LAF conditioned medium is mitogenic and positively chemotactic for epithelial cells, increases the rate of epithelial repair and protects against apoptosis. In vitro, LAM patient-derived TSC2 null cells cocultured with LAFs upregulate LAF expression of the epithelial chemokine and mitogen FGF7, which is a potential mediator of fibroblast-epithelial crosstalk, in an mTOR dependent manner. In a novel in vitro model of LAM, ex vivo cultured LAM lung-derived microtissues promote both epithelial migration and adhesion. Our findings suggest that AT2 cells in LAM display a proliferative, activated phenotype and that fibroblast accumulation following LAM cell infiltration into the parenchyma contributes to this change in AT2 cell behaviour. Fibroblast-derived FGF7 may contribute to the cross-talk between LAFs and hyperplastic epithelium in vivo, but does not appear to be the main driver of the effects of LAFs on epithelial cells in vitro.


Reproduction ◽  
2011 ◽  
Vol 142 (2) ◽  
pp. 309-318 ◽  
Author(s):  
Elizabeth M Parrish ◽  
Anaar Siletz ◽  
Min Xu ◽  
Teresa K Woodruff ◽  
Lonnie D Shea

Ovarian follicle maturation results from a complex interplay of endocrine, paracrine, and direct cell–cell interactions. This study compared the dynamic expression of key developmental genes during folliculogenesis in vivo and during in vitro culture in a 3D alginate hydrogel system. Candidate gene expression profiles were measured within mouse two-layered secondary follicles, multi-layered secondary follicles, and cumulus–oocyte complexes (COCs). The expression of 20 genes involved in endocrine communication, growth signaling, and oocyte development was investigated by real-time PCR. Gene product levels were compared between i) follicles of similar stage and ii) COCs derived either in vivo or by in vitro culture. For follicles cultured for 4 days, the expression pattern and the expression level of 12 genes were the same in vivo and in vitro. Some endocrine (cytochrome P450, family 19, subfamily A, polypeptide 1 (Cyp19a1) and inhibin βA subunit (Inhba)) and growth-related genes (bone morphogenetic protein 15 (Bmp15), kit ligand (Kitl), and transforming growth factor β receptor 2 (Tgfbr2)) were downregulated relative to in vivo follicles. For COCs obtained from cultured follicles, endocrine-related genes (inhibin α-subunit (Inha) and Inhba) had increased expression relative to in vivo counterparts, whereas growth-related genes (Bmp15, growth differentiation factor 9, and kit oncogene (Kit)) and zona pellucida genes were decreased. However, most of the oocyte-specific genes (e.g. factor in the germline α (Figla), jagged 1 (Jag1), and Nlrp5 (Mater)) were expressed in vitro at the same level and with the same pattern as in vivo-derived follicles. These studies establish the similarities and differences between in vivo and in vitro cultured follicles, guiding the creation of environments that maximize follicle development and oocyte quality.


2007 ◽  
Vol 21 (5) ◽  
pp. 533-537 ◽  
Author(s):  
Bradford A. Woodworth ◽  
Marcelo B. Antunes ◽  
Geeta Bhargave ◽  
James N. Palmer ◽  
Noam A. Cohen

Background Air–liquid interface cultures using murine tracheal respiratory epithelium have revolutionized the in vitro study of airway diseases. However, these cultures often are impractical because of the small number of respiratory epithelial cells that can be isolated from the mouse trachea. The ability to study ciliary physiology in vitro is of utmost importance in the research of chronic rhinosinusitis (CRS). Our hypothesis is that the murine nasal septum is a better source of ciliated respiratory epithelium to develop respiratory epithelial air–liquid interface models. Methods Nasal septa and tracheas were harvested from 10 BALB/c mice. The nasal septa were harvested by using a simple and straightforward novel technique. Scanning electron microscopy was performed on all specimens. Cell counts of ciliated respiratory epithelial cells were performed at one standard magnification (1535×). Comparative analysis of proximal and distal trachea, midanterior and midposterior nasal septal epithelium, was performed. Results Independent cell counts revealed highly significant differences in the proportion of cell populations (p < 0.00001). Ciliated cell counts for the trachea (106.9 ± 28) were an average of 38.7% of the total cell population. Nasal septal ciliated epithelial cells (277.5 ± 16) comprised 90.1% of the total cell population. Conclusion To increase the yield of respiratory epithelial cells harvested from mice, we have found that the nasal septum is a far superior source when compared with the trachea. The greater surface area and increased concentration of ciliated epithelial cells has the potential to provide an eightfold increase in epithelial cells for the development of air–liquid interface cultures.


2021 ◽  
Author(s):  
Brian Thompson ◽  
Emily A Davidson ◽  
Ying Chen ◽  
David J Orlicky ◽  
David C Thompson ◽  
...  

Recent reports have challenged the notion that the lens is immune-privileged. However, these studies have not fully identified the molecular mechanism(s) that promote immune surveillance of the lens. Using a mouse model of targeted glutathione (GSH) deficiency in ocular surface tissues, we have investigated the role of oxidative stress in upregulating cytokine expression and promoting immune surveillance of the eye. RNA-sequencing of lenses from postnatal day (P) 1-aged Gclcf/f;Le-CreTg/- (KO) and Gclcf/f;Le-Cre-/- control (CON) mice revealed upregulation of many cytokines (e.g., CCL4, GDF15, CSF1) and immune response genes in the lenses of KO mice. The eyes of KO mice had a greater number of cells in the aqueous and vitreous humors at P1, P20 and P50 than age-matched CON and Gclcw/w;Le-CreTg/- (CRE) mice. Histological analyses revealed the presence of innate immune cells (i.e., macrophages, leukocytes) in ocular structures of the KO mice. At P20, the expression of cytokines and ROS content was higher in the lenses of KO mice than in those from age-matched CRE and CON mice, suggesting that oxidative stress may induce cytokine expression. In vitro administration of the oxidant, hydrogen peroxide, and the depletion of GSH (using buthionine sulfoximine (BSO)) in 21EM15 lens epithelial cells induced cytokine expression, an effect that was prevented by co-treatment of the cells with N-acetyl-L-cysteine (NAC), a antioxidant. The in vivo and ex vivo induction of cytokine expression by oxidative stress was associated with the expression of markers of epithelial-to-mesenchymal transition (EMT), α-SMA, in lens cells. Given that EMT of lens epithelial cells causes posterior capsule opacification (PCO), we propose that oxidative stress induces cytokine expression, EMT and the development of PCO in a positive feedback loop. Collectively these data indicate that oxidative stress induces inflammation of lens cells which promotes immune surveillance of ocular structures.


Sign in / Sign up

Export Citation Format

Share Document