scholarly journals Discovery of novel mechanosensitive genes in vivo using mouse carotid artery endothelium exposed to disturbed flow

Blood ◽  
2010 ◽  
Vol 116 (15) ◽  
pp. e66-e73 ◽  
Author(s):  
Chih-Wen Ni ◽  
Haiwei Qiu ◽  
Amir Rezvan ◽  
Kihwan Kwon ◽  
Douglas Nam ◽  
...  

Abstract Recently, we showed that disturbed flow caused by a partial ligation of mouse carotid artery rapidly induces atherosclerosis. Here, we identified mechanosensitive genes in vivo through a genome-wide microarray study using mouse endothelial RNAs isolated from the flow-disturbed left and the undisturbed right common carotid artery. We found 62 and 523 genes that changed significantly by 12 hours and 48 hours after ligation, respectively. The results were validated by quantitative polymerase chain reaction for 44 of 46 tested genes. This array study discovered numerous novel mechanosensitive genes, including Lmo4, klk10, and dhh, while confirming well-known ones, such as Klf2, eNOS, and BMP4. Four genes were further validated for protein, including LMO4, which showed higher expression in mouse aortic arch and in human coronary endothelium in an asymmetric pattern. Comparison of in vivo, ex vivo, and in vitro endothelial gene expression profiles indicates that numerous in vivo mechanosensitive genes appear to be lost or dysregulated during culture. Gene ontology analyses show that disturbed flow regulates genes involved in cell proliferation and morphology by 12 hours, followed by inflammatory and immune responses by 48 hours. Determining the functional importance of these novel mechanosensitive genes may provide important insights into understanding vascular biology and atherosclerosis.

Reproduction ◽  
2011 ◽  
Vol 142 (2) ◽  
pp. 309-318 ◽  
Author(s):  
Elizabeth M Parrish ◽  
Anaar Siletz ◽  
Min Xu ◽  
Teresa K Woodruff ◽  
Lonnie D Shea

Ovarian follicle maturation results from a complex interplay of endocrine, paracrine, and direct cell–cell interactions. This study compared the dynamic expression of key developmental genes during folliculogenesis in vivo and during in vitro culture in a 3D alginate hydrogel system. Candidate gene expression profiles were measured within mouse two-layered secondary follicles, multi-layered secondary follicles, and cumulus–oocyte complexes (COCs). The expression of 20 genes involved in endocrine communication, growth signaling, and oocyte development was investigated by real-time PCR. Gene product levels were compared between i) follicles of similar stage and ii) COCs derived either in vivo or by in vitro culture. For follicles cultured for 4 days, the expression pattern and the expression level of 12 genes were the same in vivo and in vitro. Some endocrine (cytochrome P450, family 19, subfamily A, polypeptide 1 (Cyp19a1) and inhibin βA subunit (Inhba)) and growth-related genes (bone morphogenetic protein 15 (Bmp15), kit ligand (Kitl), and transforming growth factor β receptor 2 (Tgfbr2)) were downregulated relative to in vivo follicles. For COCs obtained from cultured follicles, endocrine-related genes (inhibin α-subunit (Inha) and Inhba) had increased expression relative to in vivo counterparts, whereas growth-related genes (Bmp15, growth differentiation factor 9, and kit oncogene (Kit)) and zona pellucida genes were decreased. However, most of the oocyte-specific genes (e.g. factor in the germline α (Figla), jagged 1 (Jag1), and Nlrp5 (Mater)) were expressed in vitro at the same level and with the same pattern as in vivo-derived follicles. These studies establish the similarities and differences between in vivo and in vitro cultured follicles, guiding the creation of environments that maximize follicle development and oocyte quality.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Risa Okada ◽  
Shin-ichiro Fujita ◽  
Riku Suzuki ◽  
Takuto Hayashi ◽  
Hirona Tsubouchi ◽  
...  

AbstractSpaceflight causes a decrease in skeletal muscle mass and strength. We set two murine experimental groups in orbit for 35 days aboard the International Space Station, under artificial earth-gravity (artificial 1 g; AG) and microgravity (μg; MG), to investigate whether artificial 1 g exposure prevents muscle atrophy at the molecular level. Our main findings indicated that AG onboard environment prevented changes under microgravity in soleus muscle not only in muscle mass and fiber type composition but also in the alteration of gene expression profiles. In particular, transcriptome analysis suggested that AG condition could prevent the alterations of some atrophy-related genes. We further screened novel candidate genes to reveal the muscle atrophy mechanism from these gene expression profiles. We suggest the potential role of Cacng1 in the atrophy of myotubes using in vitro and in vivo gene transductions. This critical project may accelerate the elucidation of muscle atrophy mechanisms.


2012 ◽  
Vol 9 (77) ◽  
pp. 3288-3302 ◽  
Author(s):  
Neha Arya ◽  
Viren Sardana ◽  
Meera Saxena ◽  
Annapoorni Rangarajan ◽  
Dhirendra S. Katti

Owing to the reduced co-relationship between conventional flat Petri dish culture (two-dimensional) and the tumour microenvironment, there has been a shift towards three-dimensional culture systems that show an improved analogy to the same. In this work, an extracellular matrix (ECM)-mimicking three-dimensional scaffold based on chitosan and gelatin was fabricated and explored for its potential as a tumour model for lung cancer. It was demonstrated that the chitosan–gelatin (CG) scaffolds supported the formation of tumoroids that were similar to tumours grown in vivo for factors involved in tumour-cell–ECM interaction, invasion and metastasis, and response to anti-cancer drugs. On the other hand, the two-dimensional Petri dish surfaces did not demonstrate gene-expression profiles similar to tumours grown in vivo . Further, the three-dimensional CG scaffolds supported the formation of tumoroids, using other types of cancer cells such as breast, cervix and bone, indicating a possible wider potential for in vitro tumoroid generation. Overall, the results demonstrated that CG scaffolds can be an improved in vitro tool to study cancer progression and drug screening for solid tumours.


2018 ◽  
Vol 129 (6) ◽  
pp. 1446-1455 ◽  
Author(s):  
Markus M. Luedi ◽  
Sanjay K. Singh ◽  
Jennifer C. Mosley ◽  
Islam S. A. Hassan ◽  
Masumeh Hatami ◽  
...  

OBJECTIVEDexamethasone, a known regulator of mesenchymal programming in glioblastoma (GBM), is routinely used to manage edema in GBM patients. Dexamethasone also activates the expression of genes, such as CEBPB, in GBM stem cells (GSCs). However, the drug’s impact on invasion, proliferation, and angiogenesis in GBM remains unclear. To determine whether dexamethasone induces invasion, proliferation, and angiogenesis in GBM, the authors investigated the drug’s impact in vitro, in vivo, and in clinical information derived from The Cancer Genome Atlas (TCGA) cohort.METHODSExpression profiles of patients from the TCGA cohort with mesenchymal GBM (n = 155) were compared with patients with proneural GBM by comparative marker selection. To obtain robust data, GSCs with IDH1 wild-type (GSC3) and with IDH1 mutant (GSC6) status were exposed to dexamethasone in vitro and in vivo and analyzed for invasion (Boyden chamber, human-specific nucleolin), proliferation (Ki-67), and angiogenesis (CD31). Ex vivo tumor cells from dexamethasone-treated and control mice were isolated by fluorescence activated cell sorting and profiled using Affymetrix chips for mRNA (HTA 2.0) and microRNAs (miRNA 4.0). A pathway analysis was performed to identify a dexamethasone-regulated gene signature, and its relationship with overall survival (OS) was assessed using Kaplan-Meier analysis in the entire GBM TCGA cohort (n = 520).RESULTSThe mesenchymal subgroup, when compared with the proneural subgroup, had significant upregulation of a dexamethasone-regulated gene network, as well as canonical pathways of proliferation, invasion, and angiogenesis. Dexamethasone-treated GSC3 demonstrated a significant increase in invasion, both in vitro and in vivo, whereas GSC6 demonstrated a modest increase. Furthermore, dexamethasone treatment of both GSC3 and GSC6 lines resulted in significantly elevated cell proliferation and angiogenesis in vivo. Patients with mesenchymal GBM had significant upregulation of dexamethasone-regulated pathways when compared with patients with proneural GBM. A prognostic (p = 0.0007) 33-gene signature was derived from the ex vivo expression profile analyses and used to dichotomize the entire TCGA cohort by high (median OS 12.65 months) or low (median OS 14.91 months) dexamethasone signature.CONCLUSIONSThe authors present evidence that furthers the understanding of the complex effects of dexamethasone on biological characteristics of GBM. The results suggest that the drug increases invasion, proliferation, and angiogenesis in human GSC-derived orthotopic tumors, potentially worsening GBM patients’ prognoses. The authors believe that careful investigation is needed to determine how to minimize these deleterious dexamethasone-associated side effects in GBM.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Jose Gomez ◽  
Eric Sum ◽  
Anna Keyte ◽  
Conrad Hodgkinson ◽  
Mary Hutson ◽  
...  

Introduction: The renin-angiotensin system (RAS) is an important component of blood pressure regulation in mammals. Renin catalyzes the rate limiting step of RAS, is produced and stored by Juxtaglomerular (JG) cells in the kidney. However, the transcriptional mechanisms that govern the specification of renin expressing cells under normal or pathophysiological conditions remain poorly understood. During blood pressure changes the number of adult renal cells expressing renin increase through a process termed JG recruitment. We found that this process involves differentiation mesenchymal stromal-like cells (MSC) to renin expressing cells. Our aim in this study was to determine new regulators of renin cell fate during kidney development and JG recruitment. Methods: Gene expression profiles of MSC and JG cells were performed with Affymetrix Mouse 430 2.0 array. In vitro assays were performed in adult renal MSCs isolated from C57BL6 Ren1c YFP mice. Renin expression in vitro was induced by treatment with IBMX and Forskolin. MSC were transduced with lentivirus carrying vectors for Sox6, Sox6 shRNA or controls. Ex vivo analysis was performed in embryonic kidneys (14.5 dpc) isolated and transduced with Sox6 or scrambled shRNA, kidneys were then cultured for 4 days and the expression of Sox6 and Renin analyzed by IHC. Results: Data showed that the transcription factor Sox6 is expressed in renin producing cells in the developing kidney (n=4) and in the adult kidney after stimulation that promotes JG recruitment (n=3). Overexpression of Sox6 (n=3, P<0.05) enhanced differentiation of renal MSCs to renin producing cells in vitro , and Sox6 knockdown reduced differentiation of renal MSC to renin producing cells in vitro (6-fold, n=4, P<0.01). Furthermore, knockdown of Sox6 in an ex vivo model of kidney development resulted in a 5-fold reduction in renin expressing cells (n=4, P<0.05). Conclusion: These results support a novel role for Sox6 in the development of renin expressing cells. This may have implications for renal development and physiology, opening new possibilities of addressing questions regarding both developmental and physiological regulation of renin.


2019 ◽  
Vol 58 (1) ◽  
pp. 30-38
Author(s):  
Patricia Navarro-Rodríguez ◽  
Adela Martin-Vicente ◽  
Loida López-Fernández ◽  
Josep Guarro ◽  
Javier Capilla

AbstractCandida glabrata causes difficult to treat invasive candidiasis due to its antifungal resistance, mainly to azoles. The aim of the present work was to study the role of the genes ERG11, CDR1, CDR2, and SNQ2 on the resistance to voriconazole (VRC) in a set of C. glabrata strains with known in vitro and in vivo susceptibility to this drug. Eighteen clinical isolates of C. glabrata were exposed in vitro to VRC, and the expression of the cited genes was quantified by real time quantitative polymerase chain reaction (q-PCR). In addition, the ERG11 gene was amplified and sequenced to detect possible mutations. Ten synonymous mutations were found in 15 strains, two of them being reported for the first time; however, no amino acid changes were detected. ERG11 and CDR1 were the most expressed genes in all the strains tested, while the expression of CDR2 and SNQ2 was modest. Our results show that gene expression does not directly correlate with the VRC MIC. In addition, the expression profiles of ERG11 and efflux pump genes did not change consistently after exposure to VRC. Although individual analysis did not result in a clear correlation between MIC and gene expression, we did observe an increase in ERG11 and CDR1 expression in resistant strains. It is of interest that considering both in vitro and in vivo results, the slight increase in such gene expression correlates with the observed resistance to VRC.


Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1039
Author(s):  
Hana S. Fukuto ◽  
Gloria I. Viboud ◽  
Viveka Vadyvaloo

Yersinia pestis, the causative agent of plague, has a complex infectious cycle that alternates between mammalian hosts (rodents and humans) and insect vectors (fleas). Consequently, it must adapt to a wide range of host environments to achieve successful propagation. Y. pestis PhoP is a response regulator of the PhoP/PhoQ two-component signal transduction system that plays a critical role in the pathogen’s adaptation to hostile conditions. PhoP is activated in response to various host-associated stress signals detected by the sensor kinase PhoQ and mediates changes in global gene expression profiles that lead to cellular responses. Y. pestis PhoP is required for resistance to antimicrobial peptides, as well as growth under low Mg2+ and other stress conditions, and controls a number of metabolic pathways, including an alternate carbon catabolism. Loss of phoP function in Y. pestis causes severe defects in survival inside mammalian macrophages and neutrophils in vitro, and a mild attenuation in murine plague models in vivo, suggesting its role in pathogenesis. A Y. pestisphoP mutant also exhibits reduced ability to form biofilm and to block fleas in vivo, indicating that the gene is also important for establishing a transmissible infection in this vector. Additionally, phoP promotes the survival of Y. pestis inside the soil-dwelling amoeba Acanthamoeba castellanii, a potential reservoir while the pathogen is quiescent. In this review, we summarize our current knowledge on the mechanisms of PhoP-mediated gene regulation in Y. pestis and examine the significance of the roles played by the PhoP regulon at each stage of the Y. pestis life cycle.


2006 ◽  
Vol 25 (5) ◽  
pp. 379-395 ◽  
Author(s):  
Gisela Werle-Schneider ◽  
Andreas Wölfelschneider ◽  
Marie Charlotte von Brevern ◽  
Julia Scheel ◽  
Thorsten Storck ◽  
...  

Transcription profiling is used as an in vivo method for predicting the mode-of-action class of nongenotoxic carcinogens. To set up a reliable in vitro short-term test system DNA microarray technology was combined with rat liver slices. Seven compounds known to act as tumor promoters were selected, which included the enzyme inducers phenobarbital, α-hexachlorocyclohexane, and cyproterone acetate; the peroxisome proliferators WY-14,643, dehydroepiandrosterone, and ciprofibrate; and the hormone 17 α-ethinylestradiol. Rat liver slices were exposed to various concentrations of the compounds for 24 h. Toxicology-focused TOXaminer™ DNA microarrays containing approximately 1500 genes were used for generating gene expression profiles for each of the test compound. Hierarchical cluster analysis revealed that (i) gene expression profiles generated in rat liver slices in vitro were specific allowing classification of compounds with similar mode of action and (ii) expression profiles of rat liver slices exposed in vitro correlate with those induced after in vivo treatment (reported previously). Enzyme inducers and peroxisome proliferators formed two separate clusters, confirming that they act through different mechanisms. Expression profiles of the hormone 17 α-ethinylestradiol were not similar to any of the other compounds. In conclusion, gene expression profiles induced by compounds that act via similar mechanisms showed common effects on transcription upon treatment in vivo and in rat liver slices in vitro.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3372-3372
Author(s):  
Ashish R. Kumar ◽  
Robert K. Slany ◽  
Jay L. Hess ◽  
John H. Kersey

Expression profiling has become an important tool for understanding gene deregulation in MLL-fusion leukemias. However, the results of gene profiling experiments are difficult to interpret when applied to leukemia cells because (i) leukemias arise in cells that differ greatly in their gene expression profiles, and (ii) leukemias most often require secondary genetic events in addition to the MLL fusion gene. Two principal model systems have been used to understand the direct effects of MLL-fusion genes. Knock-in models have the advantage of the fusion gene being under control of the physiologic promoter. On the other hand, conditional expression systems offer the ability to conduct short term experiments, permitting the analysis of direct effects on downstream genes. In the present combined-analysis, we used the Affymetrix U74Av2 oligonucleotide microarray to evaluate the effects of the MLL-fusion gene in vivo and in vitro respectively using two closely related MLL fusion genes - MLL-AF9 for knock-in and MLL-ENL for conditional expression. In the MLL-AF9 study, we compared gene expression profiles of bone marrow cells from MLL-AF9 knock-in mice (C57Bl/6, MLL-AF9+/−) to those of age-matched wild type mice (Kumar et. al. 2004, Blood). We used a t-test (p<0.05) to selected genes that showed significant changes in expression levels. In the MLL-ENL study, we transformed murine primary hematopoietic cells with a conditional MLL-ENL vector (MLL-ENL fused to the modified ligand-binding domain of the estrogen receptor) such that the fusion protein was active only in the presence of tamoxifen. We then studied the downstream effects of the fusion protein by comparing gene expression profiles of the cells in the presence and absence of tamoxifen. We used a pair-wise comparison analysis to select genes that showed a change in expression level of 1.5 fold or greater in at least two of three experiments (Zeisig et. al. 2004, Mol. Cell Biol.). Those genes that were up-regulated in both datasets were then compiled together. This list included Hoxa7, Hoxa9 and Meis1. The results for these 3 genes were confirmed by quantitative RT-PCR in both the MLL-AF9-knock-in and the MLL-ENL-conditional-expression systems. The remaining candidate genes in the common up-regulated gene set (not yet tested by quantitative RT-PCR) include protein kinases (Bmx, Mapk3, Prkcabp, Acvrl1, Cask), RAS-associated proteins (Rab7, Rab3b), signal transduction proteins (Notch1, Eat2, Shd, Fpr1), cell membrane proteins (Igsf4), chaperones (Hsp70.2), transcription factors (Isgf3g), proteins with unknown functions (Olfm1, Flot1), and hypothetical proteins. The results of the combined analysis demonstrate that these over-expressions are (i) a direct and sustained effect of the MLL-fusion protein, (ii) are independent of secondary events that might be involved in leukemogensis, and (iii) are independent of the two partner genes that participate in these fusions. The over-expression of a few genes in both the -in vitro and in vivo experimental systems makes these molecules very interesting for further studies, to understand the biology of MLL-fusion leukemias and for development of new therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document