Glucose-6 Phosphate dehydrogenase deficiency contributes to metabolic abnormality and pulmonary hypertension

Author(s):  
Mathews Valuparampil Varghese ◽  
Joel James ◽  
Olga Rafikova ◽  
Ruslan Rafikov

We have previously reported that several patients with idiopathic pulmonary hypertension (PH) had different types of G6PD deficiency. However, the role of G6PD in PH is multifactorial because G6PD is involved in controlling oxidative stress, metabolic switch, and red blood cell fragility. To delineate the contribution of G6PD in PH pathogenesis, we utilized a mouse line with decreased expression of G6PD (10% from wild-type level). We confirmed that mice with G6PD deficiency develop spontaneous pulmonary hypertension with pulmonary artery and right heart remodeling. G6PD deficiency resulted in increased free hemoglobin and activation of the p38 pathway, which we recently reported induces the development of PH in the sugen/hypoxia model via endothelial barrier dysfunction. Metabolomics analysis of G6PD deficient mice indicates the switch to alternative metabolic fluxes that feed into the pentose phosphate pathway (PPP), resulting in the upregulation of oxidative stress, fatty acid pathway, and reduction in pyruvate production. Thus, G6PD deficiency did not reduce PPP flux that is important for proliferation but activated collateral pathways at the cost of increased oxidative stress. Indeed, we found upregulation of myo-inositol oxidase, reduction in GSH/GSSG ratio, and increased nitration in the lungs of G6PD deficient mice. Increased oxidative stress also results in the activation of PI3K, ERK1/2, and AMPK that contributes to the proliferation of pulmonary vasculature. Therefore, G6PD deficiency has a multi-modal effect, including hemolysis, metabolic reprogramming, and oxidative stress leading to PH phenotype in mice.

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Mathews Valuparampil Varghes ◽  
Joel James ◽  
Olga Rafikova ◽  
Ruslan Rafikov

Introduction: Pulmonary hypertension (PH) is a fatal disorder with inadequate therapeutic choices and diminished survival rate with later prognosis. We previously reported that several patients with idiopathic pulmonary arterial hypertension had different types of glucose-6 phosphate dehydrogenase (G6PD) deficiency. G6PD is the key regulator enzyme in the pentose phosphate pathway (PPP) and the only source of NADPH in erythrocytes. However, the pathogenic mechanism of how G6PD deficiency contributes to PH development remains elusive. Hypothesis: We hypothesize that G6PD deficiency-induced PH is mediated through a multifactorial mechanism by increased red blood cell fragility, oxidative stress, and a metabolic switch. Methods: To delineate the contribution of G6PD in PH pathogenesis, we utilized a G6PD knockdown mouse line (11-13 week old) with decreased expression of G6PD (10% from wild-type level). Results: Hemodynamic and histological studies confirmed that G6PD deficient mice developed PH phenotype by an increase in right ventricular systolic pressure (30.08±0.91mmHg; p≤0.001), Fulton index (0.358±0.03; p≤0.01) and pulmonary vascular remodeling. G6PD deficiency resulted in increased free hemoglobin and activation of the p38/MAPK pathway, which we recently reported, induces the development of PH in the sugen/hypoxia model via endothelial barrier dysfunction. Metabolomics analysis of G6PD-deficient mice indicates the switch to alternative metabolic fluxes that feed into PPP, resulting in the upregulation of oxidative stress, fatty acid pathway, and reduction in pyruvate production. Thus, G6PD deficiency did not reduce PPP flux that is important for proliferation but activated collateral pathways at the cost of increased oxidative stress. Indeed, we found upregulation of Myo-inositol oxidase (p≤0.05), reduction in GSH/GSSG ratio (p≤0.01), and increased nitration (p≤0.05) in the lungs of G6PD deficient mice. Increased oxidative stress also results in the activation of PI3K, ERK1/2 and AMPK that contributes to the proliferation of pulmonary vasculature. Conclusions: Based on these results we infer that G6PD deficiency has a multi-modal effect, including hemolysis, metabolic reprogramming, and oxidative stress leading to PH.


Cell Reports ◽  
2020 ◽  
Vol 30 (5) ◽  
pp. 1417-1433.e7 ◽  
Author(s):  
Michael M. Dubreuil ◽  
David W. Morgens ◽  
Kanji Okumoto ◽  
Masanori Honsho ◽  
Kévin Contrepois ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3018
Author(s):  
Marek Samec ◽  
Alena Liskova ◽  
Lenka Koklesova ◽  
Kevin Zhai ◽  
Elizabeth Varghese ◽  
...  

Metabolic reprogramming characterized by alterations in nutrient uptake and critical molecular pathways associated with cancer cell metabolism represents a fundamental process of malignant transformation. Melatonin (N-acetyl-5-methoxytryptamine) is a hormone secreted by the pineal gland. Melatonin primarily regulates circadian rhythms but also exerts anti-inflammatory, anti-depressant, antioxidant and anti-tumor activities. Concerning cancer metabolism, melatonin displays significant anticancer effects via the regulation of key components of aerobic glycolysis, gluconeogenesis, the pentose phosphate pathway (PPP) and lipid metabolism. Melatonin treatment affects glucose transporter (GLUT) expression, glucose-6-phosphate dehydrogenase (G6PDH) activity, lactate production and other metabolic contributors. Moreover, melatonin modulates critical players in cancer development, such as HIF-1 and p53. Taken together, melatonin has notable anti-cancer effects at malignancy initiation, progression and metastasing. Further investigations of melatonin impacts relevant for cancer metabolism are expected to create innovative approaches supportive for the effective prevention and targeted therapy of cancers.


2021 ◽  
pp. 204589402198955
Author(s):  
Thomas Patrick Walsh ◽  
Grayson Baird ◽  
Michael K Atalay ◽  
Saurabh Agarwal ◽  
Daniel Arcuri ◽  
...  

Pulmonary arterial hypertension (PAH) remains life-limiting despite numerous approved vasodilator therapies. Right ventricular (RV) function determines outcome in PAH but no treatments directly target RV adaptation. PAH is more common in women, yet women have better RV function and survival as compared to men with PAH. Lower levels of the adrenal steroid dehydroepiandrosterone (DHEA) and its sulfate ester are associated with more severe pulmonary vascular disease, worse RV function, and mortality independent of other sex hormones in men and women with PAH. DHEA has direct effects on nitric oxide (NO) and endothelin-1 (ET-1) synthesis and signaling, direct antihypertrophic effects on cardiomyocytes, and mitigates oxidative stress. EDIPHY (Effects of Dehydroepiandrosterone in Pulmonary Hypertension) is an on-going randomized double-blind placebo-controlled crossover trial of DHEA in men (n = 13) and pre- and post-menopausal women (n = 13) with Group 1 PAH funded by the National Heart, Lung and Blood Institute. We will determine whether orally administered DHEA 50 mg daily for 18 weeks affects RV longitudinal strain measured by cardiac magnetic resonance imaging, markers of RV remodeling and oxidative stress, NO and ET-1 signaling, sex hormone levels, other PAH intermediate end points, side effects and safety. The crossover design will elucidate sex-based phenotypes in PAH and whether active treatment with DHEA impacts NO and ET-1 biosynthesis. EDIPHY is the first clinical trial of an endogenous sex hormone in PAH. Herein we present the study’s rationale and experimental design.


2021 ◽  
Author(s):  
D. Touchette ◽  
I. Altshuler ◽  
C. Gostinčar ◽  
P. Zalar ◽  
I. Raymond-Bouchard ◽  
...  

AbstractThe novel extremophilic yeast Rhodotorula frigidialcoholis, formerly R. JG1b, was isolated from ice-cemented permafrost in University Valley (Antarctic), one of coldest and driest environments on Earth. Phenotypic and phylogenetic analyses classified R. frigidialcoholis as a novel species. To characterize its cold-adaptive strategies, we performed mRNA and sRNA transcriptomic analyses, phenotypic profiling, and assessed ethanol production at 0 and 23 °C. Downregulation of the ETC and citrate cycle genes, overexpression of fermentation and pentose phosphate pathways genes, growth without reduction of tetrazolium dye, and our discovery of ethanol production at 0 °C indicate that R. frigidialcoholis induces a metabolic switch from respiration to ethanol fermentation as adaptation in Antarctic permafrost. This is the first report of microbial ethanol fermentation utilized as the major energy pathway in response to cold and the coldest temperature reported for natural ethanol production. R. frigidialcoholis increased its diversity and abundance of sRNAs when grown at 0 versus 23 °C. This was consistent with increase in transcription of Dicer, a key protein for sRNA processing. Our results strongly imply that post-transcriptional regulation of gene expression and mRNA silencing may be a novel evolutionary fungal adaptation in the cryosphere.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
A Kempny ◽  
K Dimopoulos ◽  
A E Fraisse ◽  
G P Diller ◽  
L C Price ◽  
...  

Abstract Background Pulmonary vascular resistance (PVR) is an essential parameter assessed during cardiac catheterization. It is used to confirm pulmonary vascular disease, to assess response to targeted pulmonary hypertension (PH) therapy and to determine the possibility of surgery, such as closure of intra-cardiac shunt or transplantation. While PVR is believed to mainly reflect the properties of the pulmonary vasculature, it is also related to blood viscosity (BV). Objectives We aimed to assess the relationship between measured (mPVR) and viscosity-corrected PVR (cPVR) and its impact on clinical decision-making. Methods We assessed consecutive PH patients undergoing cardiac catheterization. BV was assessed using the Hutton method. Results We included 465 patients (56.6% female, median age 63y). The difference between mPVR and cPVR was highest in patients with abnormal Hb levels (anemic patients: 5.6 [3.4–8.0] vs 7.8Wood Units (WU) [5.1–11.9], P<0.001; patients with raised Hb: 10.8 [6.9–15.4] vs. 7.6WU [4.6–10.8], P<0.001, respectively). Overall, 33.3% patients had a clinically significant (>2.0WU) difference between mPVR and cPVR, and this was more pronounced in those with anemia (52.9%) or raised Hb (77.6%). In patients in the upper quartile for this difference, mPVR and cPVR differed by 4.0WU [3.4–5.2]. Adjustment of PVR required Conclusions We report, herewith, a clinically significant difference between mPVR and cPVR in a third of contemporary patients assessed for PH. This difference is most pronounced in patients with anemia, in whom mPVR significantly underestimates PVR, whereas in most patients with raised Hb, mPVR overestimates it. Our data suggest that routine adjustment for BV is necessary.


Sign in / Sign up

Export Citation Format

Share Document