Roles of iNOS and nNOS in sepsis-induced pulmonary apoptosis

2004 ◽  
Vol 286 (4) ◽  
pp. L793-L800 ◽  
Author(s):  
Jill C. Rudkowski ◽  
Esther Barreiro ◽  
Rania Harfouche ◽  
Peter Goldberg ◽  
Osama Kishta ◽  
...  

Apoptosis(programmed cell death) is induced in pulmonary cells and contributes to the pathogenesis of acute lung injury in septic humans. Previous studies have shown that nitric oxide (NO) is an important modulator of apoptosis; however, the functional role of NO derived from inducible NO synthase (iNOS) in sepsis-induced pulmonary apoptosis remains unknown. We measured pulmonary apoptosis in a rat model of Escherichia coli lipopolysaccharide (LPS)-induced sepsis in the absence and presence of the selective iNOS inhibitor 1400W. Four groups were studied 24 h after saline (control) or LPS injection in the absence and presence of 1400W pretreatment. Apoptosis was evaluated using DNA fragmentation, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining, and caspase activation. LPS administration significantly augmented pulmonary cell apoptosis and caspase-3 activity in airway and alveolar epithelial cells. Pretreatment with 1400W significantly enhanced LPS-induced pulmonary apoptosis and increased caspase-3 and -7 activation. The antiapoptotic effect of iNOS was confirmed in iNOS-/- mice, which developed a greater degree of pulmonary apoptosis both under control conditions and in response to LPS compared with wild-type mice. By comparison, genetic deletion of the neuronal NOS had no effect on LPS-induced pulmonary apoptosis. We conclude that NO derived from iNOS plays an important protective role against sepsis-induced pulmonary apoptosis.

2013 ◽  
Vol 39 (9) ◽  
pp. 379-386 ◽  
Author(s):  
Zongxian Jiao ◽  
Qiangnu Zhang ◽  
Jiachen Chang ◽  
Dengmei Nie ◽  
Min Li ◽  
...  

2020 ◽  
Vol 134 (23) ◽  
pp. 3137-3158 ◽  
Author(s):  
Fiona J. Warner ◽  
Harinda Rajapaksha ◽  
Nicholas Shackel ◽  
Chandana B. Herath

Abstract Twenty years ago, the discovery of angiotensin-converting enzyme 2 (ACE2) was an important breakthrough dramatically enhancing our understanding of the renin–angiotensin system (RAS). The classical RAS is driven by its key enzyme ACE and is pivotal in the regulation of blood pressure and fluid homeostasis. More recently, it has been recognised that the protective RAS regulated by ACE2 counterbalances many of the deleterious effects of the classical RAS. Studies in murine models demonstrated that manipulating the protective RAS can dramatically alter many diseases including liver disease. Liver-specific overexpression of ACE2 in mice with liver fibrosis has proved to be highly effective in antagonising liver injury and fibrosis progression. Importantly, despite its highly protective role in disease pathogenesis, ACE2 is hijacked by SARS-CoV-2 as a cellular receptor to gain entry to alveolar epithelial cells, causing COVID-19, a severe respiratory disease in humans. COVID-19 is frequently life-threatening especially in elderly or people with other medical conditions. As an unprecedented number of COVID-19 patients have been affected globally, there is an urgent need to discover novel therapeutics targeting the interaction between the SARS-CoV-2 spike protein and ACE2. Understanding the role of ACE2 in physiology, pathobiology and as a cellular receptor for SARS-CoV-2 infection provides insight into potential new therapeutic strategies aiming to prevent SARS-CoV-2 infection related tissue injury. This review outlines the role of the RAS with a strong focus on ACE2-driven protective RAS in liver disease and provides therapeutic approaches to develop strategies to prevent SARS-CoV-2 infection in humans.


Author(s):  
Y. Romero ◽  
M. Maldonado ◽  
L.A. Placido ◽  
J. Calyeca ◽  
García-Vicente ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sireesh Kumar Teertam ◽  
Phanithi Prakash Babu

AbstractCerebral ischemia (CI) is a severe cause of neurological dysfunction and mortality. Sirtuin-1 (Silent information regulator family protein 1, SIRT1), an oxidized nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase, plays an important role in protection against several neurodegenerative disorders. The present study aims to investigate the protective role of SIRT1 after CI in experimental young and aged rats and humans. Also, the study examines the possible regulatory mechanisms of neuronal death in CI settings. Immunoblotting and immunohistochemistry were used to evaluate changes in the expression of SIRT1, JNK/ERK/MAPK/AKT signaling, and pro-apoptotic caspase-3 in experimental rats and CI patients. The study findings demonstrated that, in aged experimental rats, SIRT1 activation positively influenced JNK and ERK phosphorylation and modulated neuronal survival in AKT-dependent manner. Further, the protection conferred by SIRT1 was effectively reversed by JNK inhibition and increased pro-apoptotic caspase-3 expression. In young experimental rats, SIRT1 activation decreased the phosphorylation of stress-induced JNK, ERK, caspase-3, and increased the phosphorylation of AKT after CI. Inhibition of SIRT1 reversed the protective effect of resveratrol. More importantly, in human patients, SIRT1 expression, phosphorylation of JNK/ERK/MAPK/AKT signaling and caspase-3 were up-regulated. In conclusion, SIRT1 could possibly be involved in the modulation of JNK/ERK/MAPK/AKT signaling pathway in experimental rats and humans after CI.


2004 ◽  
Vol 72 (3) ◽  
pp. 1767-1774 ◽  
Author(s):  
Beatriz de Astorza ◽  
Guadalupe Cortés ◽  
Catalina Crespí ◽  
Carles Saus ◽  
José María Rojo ◽  
...  

ABSTRACT The airway epithelium represents a primary site for contact between microbes and their hosts. To assess the role of complement in this event, we studied the interaction between the A549 cell line derived from human alveolar epithelial cells and a major nosocomial pathogen, Klebsiella pneumoniae, in the presence of serum. In vitro, we found that C3 opsonization of poorly encapsulated K. pneumoniae clinical isolates and an unencapsulated mutant enhanced dramatically bacterial internalization by A549 epithelial cells compared to highly encapsulated clinical isolates. Local complement components (either present in the human bronchoalveolar lavage or produced by A549 epithelial cells) were sufficient to opsonize K. pneumoniae. CD46 could competitively inhibit the internalization of K. pneumoniae by the epithelial cells, suggesting that CD46 is a receptor for the binding of complement-opsonized K. pneumoniae to these cells. We observed that poorly encapsulated strains appeared into the alveolar epithelial cells in vivo but that (by contrast) they were completely avirulent in a mouse model of pneumonia compared to the highly encapsulated strains. Our results show that bacterial opsonization by complement enhances the internalization of the avirulent microorganisms by nonphagocytic cells such as A549 epithelial cells and allows an efficient innate defense.


2018 ◽  
Vol 17 (7) ◽  
pp. 975-983 ◽  
Author(s):  
Luiz Philippe da Silva Sergio ◽  
Andrezza Maria Côrtes Thomé ◽  
Larissa Alexsandra da Silva Neto Trajano ◽  
Andre Luiz Mencalha ◽  
Adenilson de Souza da Fonseca ◽  
...  

Acute lung injury (ALI) is defined as hyperinflammation that could occur from sepsis and lead to pulmonary permeability and edema, making them life-threatening diseases.


2004 ◽  
Vol 286 (1) ◽  
pp. G60-G67 ◽  
Author(s):  
Yoshiya Ito ◽  
Edward R. Abril ◽  
Nancy W. Bethea ◽  
Robert S. McCuskey

Nitric oxide (NO) is suggested to play a role in liver injury elicited by acetaminophen (APAP). Hepatic microcirculatory dysfunction also is reported to contribute to the development of the injury. As a result, the role of NO in hepatic microcirculatory alterations in response to APAP was examined in mice by in vivo microscopy. A selective inducible NO synthase (iNOS) inhibitor,l- N6-(1-iminoethyl)-lysine (l-NIL), or a nonselective NOS inhibitor, NG-nitro-l-arginine methyl ester (l-NAME), was intraperitoneally administered to animals 10 min before APAP gavage. l-NIL suppressed raised alanine aminotransferase (ALT) values 6 h after APAP, whereas l-NAME increased those 1.7-fold. Increased ALT levels were associated with hepatic expression of iNOS. l-NIL, but not l-NAME, reduced the expression. APAP caused a reduction (20%) in the numbers of perfused sinusoids. l-NIL restored the sinusoidal perfusion, but l-NAME was ineffective. APAP increased the area occupied by infiltrated erythrocytes into the extrasinusoidal space. l-NIL tended to minimize this infiltration, whereas l-NAME further enhanced it. APAP caused an increase (1.5-fold) in Kupffer cell phagocytic activity. This activity in response to APAP was blunted by l-NIL, whereas l-NAME further elevated it. l-NIL suppressed APAP-induced decreases in hepatic glutathione levels. These results suggest that NO derived from iNOS contributes to APAP-induced parenchymal cell injury and hepatic microcirculatory disturbances. l-NIL exerts preventive effects on the liver injury partly by inhibiting APAP bioactivation. In contrast, NO derived from constitutive isoforms of NOS exerts a protective role in liver microcirculation against APAP intoxication and thereby minimizes liver injury.


2006 ◽  
Vol 82 (3) ◽  
pp. 351-354 ◽  
Author(s):  
M. E. Pero ◽  
N. Mirabella ◽  
P. Lombardi ◽  
C. Squillacioti ◽  
A. De Luca ◽  
...  

AbstractIn the present study, the rôle of gammaglutamyltransferase (GGT) during lactation has been investigated in the water buffalo. GGT activity has been evaluated in the mammary tissue at 4 and 6 months after calving and during the non-lactating period. The highest GGT activity levels were found at day 120 (32·57±7·41 U per g) of lactation and were statistically higher than those at 180 (10·76±3·6 U per g) or during the non-lactating period (9·86±7·94 U per g). Histochemistry confirmed these findings and revealed that GGT reactivity was distributed throughout the cytoplasm of alveolar epithelial cells. Such results showed that the GGT production is high during lactation thus supporting the hypothesis that this enzyme plays a rôle in determining milk production in water buffalo by supporting milk protein synthesis.


Biology ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 239
Author(s):  
Fatma M. Ghoneim ◽  
Hani Alrefai ◽  
Ayman Z. Elsamanoudy ◽  
Salwa M. Abo El-khair ◽  
Hanaa A. Khalaf

Background: Sodium valproate (VPA) is an antiepileptic drug (AED) licensed for epilepsy and used during pregnancy in various indications. Alpha-lipoic acid (ALA) is a natural compound inducing endogenous antioxidant production. Our study aimed to investigate the effect of prenatal administration of VPA on the pancreas of rat offspring and assess the potential protective role of ALA co-administration during pregnancy. Methods: Twenty-eight pregnant female albino rats were divided into four groups: group I (negative control), group II (positive control, ALA treated), group III (VPA-treated), and group IV (VPA-ALA-treated). The pancreases of the rat offspring were removed at the fourth week postpartum and prepared for histological, immune-histochemical, morphometric, molecular, and oxidative stress marker studies. Results: In group III, there were pyknotic nuclei, vacuolated cytoplasm with ballooning of acinar, α, and β cells of the pancreas. Ultrastructural degeneration of cytoplasmic organelles was detected. Additionally, there was a significant increase in oxidative stress, a decrease in insulin-positive cell percentage, and an increase in glucagon positive cells in comparison to control groups. Moreover, VPA increased the gene expression of an apoptotic marker, caspase-3, with a decrease in anti-apoptotic Bcl2 and nuclear factor erythroid 2-related factor 2 (Nrf2) transcriptional factor. Conversely, ALA improved oxidative stress and apoptosis in group VI, and a consequent improvement of the histological and ultrastructure picture was detected. Conclusion: ALA co-administration with VPA significantly improved the oxidative stress condition, histological and morphometric picture of the pancreas, and restored normal expression of related genes, including Nrf2, caspase-3, and Bcl-2. Administration of α-lipoic acid has a protective effect against VPA-induced pancreatic oxidative damage via its cytoprotective antioxidant effect.


Sign in / Sign up

Export Citation Format

Share Document