Sulfhydryl-depleting agents, but not deferoxamine, modulate EDRF action in cultured pulmonary arterial cells

1993 ◽  
Vol 265 (3) ◽  
pp. L220-L227
Author(s):  
N. Marczin ◽  
U. S. Ryan ◽  
J. D. Catravas

The potential role of intracellular sulfhydryls and iron on the biological activity of endothelium-derived relaxing factor (EDRF) released basally from bovine pulmonary arterial endothelial (BPAE) cells was investigated in a cultured cell bioassay system, by measuring N omega-nitro-L-arginine-sensitive guanosine 3',5'-cyclic monophosphate (cGMP) accumulation in rabbit pulmonary arterial smooth muscle (SM) cells. The role of sulfhydryls in the biosynthesis of EDRF was studied by selectively exposing the endothelial cells to thiol-depleting agents. Both N-ethylmaleimide (NEM) and maleic acid diethyl ester (DEM) inhibited EDRF-induced cGMP accumulation in a dose-dependent manner. To study the requirement of SM thiols in the metabolism of EDRF to a stimulator of cGMP formation, SM were selectively exposed to NEM and DEM before bioassay with control, untreated BPAE. DEM and NEM inhibited cGMP formation in response to EDRF by 30 and 68%, respectively. The requirement of SM sulfhydryls was further investigated in the stimulation of SM cGMP accumulation elicited by nitrosothiols [S-nitroso-L-cysteine, S-nitroso-mercaptoproprionic acid, and sodium nitroprusside (SNP)]. NEM pretreatment of SM cells abolished cGMP responses to all vasodilators; DEM did not affect the nitrosothiol responses but reduced by 30% the cGMP accumulation to SNP. The role of iron in the endothelial synthesis of EDRF was assessed by chelating endothelial low-molecular-weight iron compounds. Exposure of BPAE to deferoxamine mesylate had no effect on cGMP accumulation in SM, suggesting that deferoxamine-available iron is not necessary for the endothelial stimulation of SM cGMP formation.(ABSTRACT TRUNCATED AT 250 WORDS)

1996 ◽  
Vol 271 (1) ◽  
pp. L172-L177 ◽  
Author(s):  
J. Tamaoki ◽  
E. Tagaya ◽  
I. Yamawaki ◽  
K. Konno

To elucidate the effect of hypoxia on nitrovasodilator-induced pulmonary vasodilation, we studied canine pulmonary arterial rings under isometric conditions in vitro. Exposure to hypoxia inhibited the relaxant responses of KCl-contracted tissues to sodium nitroprusside (SNP), so that the maximal relaxation (Emax) and the negative logarithm of molar concentration required to produce 50% relaxation (pD2) were decreased from 92 +/- 7 to 62 +/- 5% and from 5.8 +/- 0.2 to 4.7 +/- 0.3, respectively (means +/- SE, P < 0.01 for each). This effect was likewise observed when 8-bromoguanosine-3',5'-cyclic monophosphate was used as a relaxant. The impairment of SNP-induced relaxation of endothelium-denuded rings under hypoxia was abolished by ouabain or K(+)-free solution. Incubation with SNPincreased intracellular cGMP contents in a dose dependent manner, an effect that was not altered by hypoxia. SNP also increased ouabain-sensitive 86Rb uptake, and this effect was inhibited by hypoxia. These results suggest that hypoxia reduces nitrovasodilator-induced relaxation of pulmonary artery, probably through an inhibition of cGMP-dependent sarcolemmal Na-K-adenosine triphosphatase activity.


2006 ◽  
Vol 74 (5) ◽  
pp. 2809-2816 ◽  
Author(s):  
Jannet Katz ◽  
Ping Zhang ◽  
Michael Martin ◽  
Stefanie N. Vogel ◽  
Suzanne M. Michalek

ABSTRACT Francisella tularensis, a gram-negative bacterium, is the etiologic agent of tularemia and has recently been classified as a category A bioterrorism agent. Infections with F. tularensis result in an inflammatory response that plays an important role in the pathogenesis of the disease; however, the cellular mechanisms mediating this response have not been completely elucidated. In the present study, we determined the role of Toll-like receptors (TLRs) in mediating inflammatory responses to F. tularensis LVS, and the role of NF-κB in regulating these responses. Stimulation of bone marrow-derived dendritic cells from C57BL/6 wild-type (wt) and TLR4−/− but not TLR2−/− mice, with live F. tularensis LVS elicited a dose-dependent increase in the production of tumor necrosis factor alpha. F. tularensis LVS also induced in a dose-dependent manner an up-regulation in the expression of the costimulatory molecules CD80 and CD86 and of CD40 and the major histocompatibility complex class II molecules on dendritic cells from wt and TLR4−/− but not TLR2−/− mice. TLR6, not TLR1, was shown to be involved in mediating the inflammatory response to F. tularensis LVS, indicating that the functional heterodimer is TLR2/TLR6. Stimulation of dendritic cells with F. tularensis resulted in the activation of NF-κB, which resulted in a differential effect on the production of pro- and anti-inflammatory cytokines. Taken together, our results demonstrate the role of TLR2/TLR6 in the host's inflammatory response to F. tularensis LVS in vitro and the regulatory function of NF-κB in modulating the inflammatory response.


1989 ◽  
Vol 257 (6) ◽  
pp. G969-G976
Author(s):  
O. Subero ◽  
P. Lobo ◽  
J. Chacin

The role of extracellular Ca2+ in metabolic effects induced by theophylline and histamine was investigated in the isolated toad gastric mucosa. Primary and secondary effects on metabolism were differentiated by using K(+)-free solutions, which blocked the secretory responses but not the metabolic ones. The stimulation of respiration induced by theophylline and histamine was dose dependent and was significantly decreased by Ca2(+)-free solutions. In the presence of 1.8 mM Ca2+, the rate of glycogen breakdown was increased by theophylline in a dose-dependent manner and the dose-response curve was somewhat similar to that obtained with oxygen uptake. This effect was inhibited by incubation in Ca2(+)-free solutions. Ca2+ stimulated the rate of glycogen utilization in a concentration-dependent manner. The rates of oxidation of exogenous glucose and pyruvate were significantly inhibited by Ca2(+)-free solutions in theophylline- and histamine-stimulated mucosa, whereas the rates of oxidation of butyrate and acetate were not significantly affected. The Ca2+ ionophore A23187 significantly stimulated the rate of oxygen uptake and this response was not blocked by omeprazole and Sch 28080, two specific inhibitors of gastric H(+)-K(+)-ATPase. The results indicate that Ca2+ is required for optimal stimulation of carbohydrate catabolism in the toad gastric mucosa.


2019 ◽  
Vol 17 (4) ◽  
pp. 426-431
Author(s):  
Jin Xuezhu ◽  
Li Jitong ◽  
Nie Leigang ◽  
Xue Junlai

The main purpose of this study is to investigate the role of citrus leaf extract in carbon tetrachloride-induced hepatic injury and its potential molecular mechanism. Carbon tetrachloride was used to construct hepatic injury animal model. To this end, rats were randomly divided into 4 groups: control, carbon tetrachloride-treated, and two carbon tetrachloride + citrus leaf extract-treated groups. The results show that citrus leaf extract treatment significantly reversed the effects of carbon tetrachloride on the body weight changes and liver index. Besides, treatment with citrus leaf extract also reduced the levels of serum liver enzymes and oxidative stress in a dose-dependent manner. H&E staining and western blotting suggested that citrus leaf extract could repair liver histological damage by regulating AMPK and Nrf-2.


2021 ◽  
Vol 22 (9) ◽  
pp. 4717
Author(s):  
Jin-Young Lee ◽  
Da-Ae Kim ◽  
Eun-Young Kim ◽  
Eun-Ju Chang ◽  
So-Jeong Park ◽  
...  

Lumican, a ubiquitously expressed small leucine-rich proteoglycan, has been utilized in diverse biological functions. Recent experiments demonstrated that lumican stimulates preosteoblast viability and differentiation, leading to bone formation. To further understand the role of lumican in bone metabolism, we investigated its effects on osteoclast biology. Lumican inhibited both osteoclast differentiation and in vitro bone resorption in a dose-dependent manner. Consistent with this, lumican markedly decreased the expression of osteoclastogenesis markers. Moreover, the migration and fusion of preosteoclasts and the resorptive activity per osteoclast were significantly reduced in the presence of lumican, indicating that this protein affects most stages of osteoclastogenesis. Among RANKL-dependent pathways, lumican inhibited Akt but not MAP kinases such as JNK, p38, and ERK. Importantly, co-treatment with an Akt activator almost completely reversed the effect of lumican on osteoclast differentiation. Taken together, our findings revealed that lumican inhibits osteoclastogenesis by suppressing Akt activity. Thus, lumican plays an osteoprotective role by simultaneously increasing bone formation and decreasing bone resorption, suggesting that it represents a dual-action therapeutic target for osteoporosis.


2017 ◽  
Vol 313 (5) ◽  
pp. L899-L915 ◽  
Author(s):  
Fumiaki Kato ◽  
Seiichiro Sakao ◽  
Takao Takeuchi ◽  
Toshio Suzuki ◽  
Rintaro Nishimura ◽  
...  

Pulmonary arterial hypertension (PAH) is characterized by progressive obstructive remodeling of pulmonary arteries. However, no reports have described the causative role of the autophagic pathway in pulmonary vascular endothelial cell (EC) alterations associated with PAH. This study investigated the time-dependent role of the autophagic pathway in pulmonary vascular ECs and pulmonary vascular EC kinesis in a severe PAH rat model (Sugen/hypoxia rat) and evaluated whether timely induction of the autophagic pathway by rapamycin improves PAH. Hemodynamic and histological examinations as well as flow cytometry of pulmonary vascular EC-related autophagic pathways and pulmonary vascular EC kinetics in lung cell suspensions were performed. The time-dependent and therapeutic effects of rapamycin on the autophagic pathway were also assessed. Sugen/hypoxia rats treated with the vascular endothelial growth factor receptor blocker SU5416 showed increased right ventricular systolic pressure (RVSP) and numbers of obstructive vessels due to increased pulmonary vascular remodeling. The expression of the autophagic marker LC3 in ECs also changed in a time-dependent manner, in parallel with proliferation and apoptotic markers as assessed by flow cytometry. These results suggest the presence of cross talk between pulmonary vascular remodeling and the autophagic pathway, especially in small vascular lesions. Moreover, treatment of Sugen/hypoxia rats with rapamycin after SU5416 injection activated the autophagic pathway and improved the balance between cell proliferation and apoptosis in pulmonary vascular ECs to reduce RVSP and pulmonary vascular remodeling. These results suggested that the autophagic pathway can suppress PAH progression and that rapamycin-dependent activation of the autophagic pathway could ameliorate PAH.


1990 ◽  
Vol 123 (2) ◽  
pp. 218-224 ◽  
Author(s):  
Xiangbing Wang ◽  
Noriyuki Sato ◽  
Monte A. Greer ◽  
Susan E. Greer ◽  
Staci McAdams

Abstract. The mechanism by which 30% medium hyposmolarity induces PRL secretion by GH4C1 cells was compared with that induced by 100 nmol/l TRH or 30 mmol/l K+. Removing medium Ca2+, blocking Ca2+ channels with 50 μmol/l verapamil, or inhibiting calmodulin activation with 20 μmol/l trifluoperazine, 10 μmol/l chlorpromazine or 10 μmol/l pimozide almost completely blocked hyposmolarity-induced secretion. The smooth muscle relaxant, W-7, which is believed relatively specific in inhibiting the Ca2+-calmodulin interaction, depressed hyposmolarity-induced PRL secretion in a dose-dependent manner (r = −0.991, p<0.01 ). The above drugs also blocked or decreased high K+-induced secretion, but had much less effect on TRH-induced secretion. Secretion induced by TRH, hyposmolarity, or high K+ was optimal at pH 7.3-7.65 and was significantly depressed at pH 6.0 or 8.0, indicating that release of hormone induced by all 3 stimuli is due to an active cell process requiring a physiologic extracellular pH and is not produced by nonspecific cell toxicity. The data suggest hyposmolarity and high K+ may share some similarities in their mechanism of stimulating secretion, which is different from that of TRH.


Genome ◽  
2011 ◽  
Vol 54 (9) ◽  
pp. 752-762 ◽  
Author(s):  
Alireza Sameny ◽  
John Locke

Transposable elements are found in the genomes of all eukaryotes and play a critical role in altering gene expression and genome organization. In Drosophila melanogaster, transposable P elements are responsible for the phenomenon of hybrid dysgenesis. KP elements, a deletion-derivative of the complete P element, can suppress this mutagenic effect. KP elements can also silence the expression of certain other P-element-mediated transgenes in a process called P-element-dependent silencing (PDS), which is thought to involve the recruitment of heterochromatin proteins. To explore the mechanism of this silencing, we have mobilized KP elements to create a series of strains that contain single, well-defined KP insertions that show PDS. To understand the quantitative role of KP elements in PDS, these single inserts were combined in a series of crosses to obtain genotypes with zero, one, or two KP elements, from which we could examine the effect of KP gene dose. The extent of PDS in these genotypes was shown to be dose dependent in a logarithmic rather than linear fashion. A logarithmic dose dependency is consistent with the KP products interacting with heterochromatic proteins in a concentration-dependent manner such that two molecules are needed to induce gene silencing.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Aifeng Chen ◽  
Shibiao Ding ◽  
Liangliang Kong ◽  
Jianpu Xu ◽  
Fei He ◽  
...  

AbstractPulmonary arterial hypertension (PAH) is a group of diseases with an increase of pulmonary artery pressure (PAP) and pulmonary vascular resistance. Here, the effects of safflower injection, a preparation of Chinese herbs, was investigated in a monocrotaline (MCT)-induced PAH rat model. PAP, carotid artery pressure (CAP), and the right ventricular hypertrophy index (RVHI) increased in the PAH group, while safflower injection was able to inhibit this increase to similar levels as observed in the normal group. The arteriole wall of the lungs and cardiac muscle were thickened and edema was observed in the PAH group, while these pathologies were improved in the herb-treated group in a dose-dependent manner. MCT treatment induced proliferation of pulmonary artery smooth muscle cells (PASMCs), which was inhibited by safflower injection in a dose-dependent manner. Our experimental results demonstrated that safflower injection can regulate pulmonary arterial remodeling through affecting the expression of connective tissue growth factor, transforming growth factor-β, integrin, collagen or fibronectin, which subsequently affected the thicknesses of the arteriole walls of the lungs and cardiac muscle, and thereby benefits the control of PAH. This means safflower injection improved the abnormalities in PAP, CAP and RVHI, and pulmonary arterial remodeling through regulation of remodeling factors.


1993 ◽  
Vol 106 (1) ◽  
pp. 109-119 ◽  
Author(s):  
M.J. May ◽  
G. Entwistle ◽  
M.J. Humphries ◽  
A. Ager

Previous studies have shown that unactivated lymphocytes bind to CS1 peptide and that the adhesion of these cells to high endothelium is inhibited by CS1 peptide. These results suggest that lymphocyte binding occurs via recognition of the CS1-containing splice variant of fibronectin expressed on the high endothelial surface. We have now extended these studies by determining the role of the CS1 receptor, alpha 4 beta 1 (VLA-4) and the alternative VLA-4 ligand, VCAM-1 in a rat model of lymphocyte-high endothelial cell interaction. Anti-VLA-4 antibody, HP2/1, blocked lymphocyte adhesion to resting and IFN-gamma (interferon-gamma) pretreated cultured high endothelial cells (HEC) in a dose-dependent manner with maximal inhibition of 60%. HP2/1 completely blocked the adhesion of rat lymphocytes to immobilized CS1 peptide and to a recombinant soluble (rs) form of human VCAM-1. Lymphocyte binding to rsVCAM-1 was also completely blocked by CS1 peptide. Anti-rat VCAM-1 monoclonal antibody 5F10 inhibited adhesion to untreated and IFN-gamma-treated HEC equally and its effect at 50% inhibition was slightly less than that of HP2/1. These findings suggest that a CS1 peptide-inhibitable ligand expressed by high endothelium is VCAM-1. The majority of cultured HEC expressed significant levels of VCAM-1 under basal conditions, as did HEV in peripheral lymph nodes. VCAM-1 expression by HEC was upregulated by cytokine pretreatment and the effects were ordered: IFN-gamma &gt; TNF-alpha &gt; IL-1 beta. The results described here demonstrate that rat peripheral lymph node HEC express VCAM-1, its expression is upregulated by cytokines, in particular IFN-gamma, and it supports the adhesion of unactivated lymphocytes. They also suggest that the VLA-4/VCAM-1 adhesion pathway may operate during the constitutive migration of lymphocytes into lymphoid organs. Although the mechanism of CS1 peptide inhibition was not determined, these results show that VCAM-1 is a CS1 peptide-inhibitable ligand and therefore CS1, on its own, cannot be used as a specific indicator of fibronectin activity.


Sign in / Sign up

Export Citation Format

Share Document