Carbon dioxide enhances nitration of surfactant protein A by activated alveolar macrophages

2000 ◽  
Vol 278 (5) ◽  
pp. L1025-L1031 ◽  
Author(s):  
Sha Zhu ◽  
Khaled F. Basiouny ◽  
John P. Crow ◽  
Sadis Matalon

We assessed whether reactive oxygen-nitrogen intermediates generated by alveolar macrophages (AMs) oxidized and nitrated human surfactant protein (SP) A. SP-A was exposed to lipopolysaccharide (100 ng/ml)-activated AMs in 15 mM HEPES (pH 7.4) for 30 min in the presence and absence of 1.2 mM CO2. In the presence of CO2, lipopolysaccharide-stimulated AMs had significantly higher nitric oxide synthase (NOS) activity (as quantified by the conversion ofl-[U-14C]arginine tol-[U-14C]citrulline) and secreted threefold higher levels of nitrate plus nitrite in the medium [28 ± 3 vs. 6 ± 1 (SE) nmol ⋅ 6.5 h−1 ⋅ 106AMs−1]. Western blotting studies of immunoprecipitated SP-A indicated that CO2 enhanced SP-A nitration by AMs and decreased carbonyl formation. CO2(0–1.2 mM) also augmented peroxynitrite (0.5 mM)-induced SP-A nitration in a dose-dependent fashion. Peroxynitrite decreased the ability of SP-A to aggregate lipids, and this inhibition was augmented by 1.2 mM CO2. Mass spectrometry analysis of chymotryptic fragments of peroxynitrite-exposed SP-A showed nitration of two tyrosines (Tyr164 and Tyr166) in the absence of CO2 and three tyrosines (Tyr164, Tyr166, and Tyr161) in the presence of 1.2 mM CO2. These findings indicate that physiological levels of peroxynitrite, produced by activated AMs, nitrate SP-A and that CO2 increased nitration, at least partially, by enhancing enzymatic nitric oxide production.

1992 ◽  
Vol 262 (4) ◽  
pp. L412-L417 ◽  
Author(s):  
U. Pison ◽  
J. R. Wright ◽  
S. Hawgood

Surfactant protein A (SP-A) influences the function of alveolar macrophages in vitro. In this study the characteristics of the binding of 125I-labeled SP-A to rat alveolar macrophages has been investigated. The binding of SP-A to alveolar macrophages at 4 degrees C was saturable with half-maximal binding at a SP-A concentration of 4 micrograms/ml. Bound SP-A was rapidly displaced by an excess of unlabeled SP-A. The binding of labeled SP-A to the alveolar macrophages was blocked in a dose-dependent fashion by unlabeled SP-A, the collagen-like protein C1q and type V collagen but not by bovine serum albumin. These results suggest that a component of the interaction between SP-A and alveolar macrophages is mediated through the collagen-like domain of SP-A and that the characteristics of this interaction are consistent with there being a specific receptor for SP-A on the surface of alveolar macrophages.


1994 ◽  
Vol 267 (3) ◽  
pp. L242-L249 ◽  
Author(s):  
I. Y. Haddad ◽  
J. P. Crow ◽  
P. Hu ◽  
Y. Ye ◽  
J. Beckman ◽  
...  

The conditions under which nitric oxide (.NO) may modulate or promote lung injury have not been identified. We hypothesized that .NO-induced injury results from peroxynitrite, formed by the reaction of .NO with superoxide. The simultaneous generation of .NO and superoxide by 3-morpholinosydnonimine (SIN-1, 0.1-2 mM) resulted in oxidation of dihydrorhodamine, a marker of peroxynitrite production, and a dose-dependent decrease in the ability of SP-A to enhance lipid aggregation. Western blot analysis of SIN-1 exposed SP-A samples, overlaid with a polyclonal antibody against nitrotyrosine, were consistent with nitration of SP-A tyrosine residues. Superoxide dismutase (100 U/ml), L-cysteine (5 mM), xanthine oxidase (10 mU/ml) and xanthine (500 microM), or urate (100 microM) prevented the SIN-1-induced dihydrorhodamine oxidation and injury to SP-A. .NO alone, generated by S-nitroso-N-acetylpenicillamine plus 100 microM L-cysteine, or superoxide and hydrogen peroxide, generated by pterin and xanthine oxidase in the absence of iron, did not damage SP-A or oxidize dihydrorhodamine. We concluded that peroxynitrite, but not .NO or superoxide and hydrogen peroxide, in concentrations likely to be encountered in vivo, caused nitrotyrosine formation and decreased the ability of SP-A to aggregate lipids.


2000 ◽  
Vol 279 (2) ◽  
pp. L216-L223 ◽  
Author(s):  
Laura F. Weikert ◽  
Joseph P. Lopez ◽  
Rasul Abdolrasulnia ◽  
Zissis C. Chroneos ◽  
Virginia L. Shepherd

Surfactant-associated protein A (SP-A) is involved in surfactant homeostasis and host defense in the lung. We have previously demonstrated that SP-A specifically binds to and enhances the ingestion of bacillus Calmette-Guerin (BCG) organisms by macrophages. In the current study, we investigated the effect of SP-A on the generation of inflammatory mediators induced by BCG and the subsequent fate of ingested BCG organisms. Rat macrophages were incubated with BCG in the presence and absence of SP-A. Noningested BCG organisms were removed, and the release of tumor necrosis factor-α (TNF-α) and nitric oxide were measured at varying times. TNF-α and nitric oxide production induced by BCG were enhanced by SP-A. In addition, SP-A enhanced the BCG-induced increase in the level of inducible nitric oxide synthase protein. Addition of antibodies directed against SPR210, a specific macrophage SP-A receptor, inhibited the SP-A-enhanced mediator production. BCG in the absence of SP-A showed increased growth over a 5-day period, whereas inclusion of SP-A dramatically inhibited BCG growth. Inhibition of nitric oxide production blocked BCG killing in the presence and absence of SP-A. These results demonstrate that ingestion of SP-A-BCG complexes by rat macrophages leads to production of inflammatory mediators and increased mycobacterial killing.


1995 ◽  
Vol 108 (12) ◽  
pp. 3695-3702
Author(s):  
D. Ohmer-Schrock ◽  
C. Schlatterer ◽  
H. Plattner ◽  
J. Schlepper-Schafer

Lung surfactant protein A (SP-A), the main protein component of lung surfactant which lines the alveoli, strongly enhances serum-independent phagocytosis of bacteria by rat alveolar macrophages. We tested if the effect of SP-A is due to interaction with the macrophages or to opsonization of the bacteria. In phagocytosis assays with fluorescein isothiocyanate labeled bacteria, SP-A had no opsonic effect on Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, but enhanced phagocytosis by acting only on the macrophages. We characterized this activation mechanism. With single cell measurements of fura-2 loaded cells we demonstrate that SP-A raises the intracellular free calcium ion concentration 6 to 8 seconds after addition. This calcium mobilization is dose-dependent in that increased SP-A concentrations lead to a higher percentage of responding cells. Additionally, SP-A leads to a dose-dependent and transient generation of inositol 1,4.5-trisphosphate. Release of intracellular stored calcium by SP-A is a prerequisite for its stimulatory effect on phagocytosis, since SP-A-induced enhancement of phagocytosis can be impaired by prior addition of thapsigargin, a Ca(2+)-ATPase inhibitor that leads to depletion of intracellular calcium stores. We conclude that SP-A activates a phosphoinositide/calcium signaling pathway in alveolar macrophages leading to enhanced serum-independent phagocytosis of bacteria.


1998 ◽  
Vol 274 (2) ◽  
pp. L270-L277 ◽  
Author(s):  
Judy M. Hickman-Davis ◽  
J. Russell Lindsey ◽  
S. Zhu ◽  
S. Matalon

Mycoplasma pneumoniae is a leading cause of pneumonia and exacerbates other respiratory diseases in humans. We investigated the potential role of surfactant protein (SP) A in antimycoplasmal defense using alveolar macrophages (AMs) from C57BL/6NCr (C57BL) mice, which are highly resistant to infections of Mycoplasma pulmonis. C57BL AMs, activated with interferon (IFN)-γ and incubated with SP-A (25 μg/ml) at 37°C, produced significant amounts of nitric oxide (⋅ NO; nitrate and nitrite production = 1.1 μM ⋅ h−1⋅ 105AMs−1) and effected an 83% decrease in mycoplasma colony-forming units (CFUs) by 6 h postinfection. Preincubation of AMs with the inducible nitric oxide synthase inhibitor NG-monomethyl-l-arginine abolished ⋅ NO production and SP-A-mediated killing of mycoplasmas. No decrease in CFUs was seen when IFN-γ-activated macrophages were infected with mycoplasmas in the absence of SP-A despite significant ⋅ NO production (nitrate and nitrite production = 0.6 μM ⋅ h−1⋅ 105AMs−1). These results demonstrate that SP-A mediates killing of mycoplasmas by AMs, possibly through an ⋅ NO-dependent mechanism.


2020 ◽  
Vol 85 (4) ◽  
pp. 882-889
Author(s):  
Yan Liang ◽  
Shijiao Zha ◽  
Masanobu Tentaku ◽  
Takasi Okimura ◽  
Zedong Jiang ◽  
...  

ABSTRACT In this study, we found that a sulfated polysaccharide isolated from the brown alga Ascophyllum nodosum, ascophyllan, showed suppressive effects on stimulated RAW264.7 cells. Ascophyllan significantly inhibited expression of inducible nitric oxide synthase mRNA and excessive production of nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells in a dose-dependent manner without affecting the viability of RAW264.7 cells. Ascophyllan also reduced the elevated level of intracellular reactive oxygen species (ROS) in LPS-stimulated RAW264.7 cells. Furthermore, preincubation with ascophyllan resulted in concentration-dependent decrease in ROS production in phorbol 12-myristate-13-acetate-stimulated RAW264.7 cells. Our results suggest that ascophyllan can exhibit anti-inflammatory effects on stimulated macrophages mainly through the attenuation of NO and ROS productions.


1996 ◽  
Vol 183 (5) ◽  
pp. 2293-2302 ◽  
Author(s):  
S Nicholson ◽  
M da G Bonecini-Almeida ◽  
J R Lapa e Silva ◽  
C Nathan ◽  
Q W Xie ◽  
...  

The high-output pathway of nitric oxide production helps protect mice from infection by several pathogens, including Mycobacterium tuberculosis. However, based on studies of cells cultured from blood, it is controversial whether human mononuclear phagocytes can express the corresponding inducible nitric oxide synthase (iNOS;NOS2). The present study examined alveolar macrophages fixed directly after bronchopulmonary lavage. An average of 65% of the macrophages from 11 of 11 patients with untreated, culture-positive pulmonary tuberculosis reacted with an antibody documented herein to be monospecific for human NOS2. In contrast, a mean of 10% of bronchoalveolar lavage cells were positive from each of five clinically normal subjects. Tuberculosis patients' macrophages displayed diaphorase activity in the same proportion that they stained for NOS2, under assay conditions wherein the diaphorase reaction was strictly dependent on NOS2 expression. Bronchoalveolar lavage specimens also contained NOS2 mRNA. Thus, macrophages in the lungs of people with clinically active Mycobacterium tuberculosis infection often express catalytically competent NOS2.


1995 ◽  
Vol 309 (2) ◽  
pp. 551-555 ◽  
Author(s):  
J F van Iwaarden ◽  
F Teding van Berkhout ◽  
J A Whitsett ◽  
R S Oosting ◽  
L M G van Golde

Previous studies have shown that surfactant protein A (SP-A) derived from alveolar-proteinosis patients activates rat alveolar macrophages. However, it is not known if normal rat, dog and human SP-A can also stimulate alveolar macrophages. As alveolar-proteinosis SP-A has a slightly different structure from ordinary SP-A, it would be possible that the ascribed alveolar-macrophage-stimulating properties of SP-A are restricted to alveolar-proteinosis SP-A. To clarify this issue, we isolated SP-A from normal rat and dog pulmonary surfactants, using the same isolation technique commonly used for the isolation of alveolar-proteinosis SP-A, i.e. by butanol precipitation. In contrast with human alveolar-proteinosis SP-A, rat and dog SP-A obtained thus could not activate rat alveolar macrophages to produce oxygen radicals or enhance the phagocytosis of fluorescein isothiocyanate-labelled herpes simplex virus. However, rat, dog and normal human SP-A isolated by a novel method, involving extraction from pulmonary surfactant by using n-octyl beta-D-glucopyranoside and subsequent purification by cation-exchange chromatography, were able to elicit an oxidative burst in rat as well as normal human alveolar macrophages. In addition, dog and rat SP-A obtained thus stimulated the phagocytosis of herpes simplex virus by rat alveolar macrophages. These findings indicate that normal human, rat and dog SP-A have the same alveolar-macrophage-stimulating properties as human alveolar proteinosis SP-A. Dog and rat SP-A isolated by this novel method had the same Ca(2+)-dependent self-aggregation and lipid-aggregation properties as SP-A isolated by butanol precipitation. The new and milder isolation procedure yielded SP-A of high purity, as judged by SDS/PAGE and ELISA.


2000 ◽  
Vol 68 (12) ◽  
pp. 7087-7093 ◽  
Author(s):  
Y.-H. Li ◽  
Z.-Q. Yan ◽  
J. Skov Jensen ◽  
K. Tullus ◽  
A. Brauner

ABSTRACT Chronic lung disease (CLD) of prematurity is an inflammatory disease with a multifactorial etiology. The importance ofUreaplasma urealyticum in the development of CLD is debated, and steroids produce some improvement in neonates with this disease. In the present study, the capability of U. urealyticum to stimulate rat alveolar macrophages to produce nitric oxide (NO), express inducible nitric oxide synthase (iNOS), and activate nuclear factor κB (NF-κB) in vitro was characterized. The effect of NO on the growth of U. urealyticum was also investigated. In addition, the impact of dexamethasone and budesonide on these processes was examined. We found that U. urealyticum antigen (≥4 × 107 color-changing units/ml) stimulated alveolar macrophages to produce NO in a dose- and time-dependent manner (P < 0.05). This effect was further enhanced by gamma interferon (100 IU/ml; P < 0.05) but was attenuated by budesonide and dexamethasone (10−4 to 10−6 M) (P < 0.05). The mRNA and protein levels of iNOS were also induced in response to U. urealyticum and inhibited by steroids.U. urealyticum antigen triggered NF-κB activation, a possible mechanism for the induced iNOS expression, which also was inhibited by steroids. NO induced by U. urealyticum caused a sixfold reduction of its own growth after infection for 10 h. Our findings imply that U. urealyticum may be an important factor in the development of CLD. The host defense response againstU. urealyticum infection may also be influenced by NO. The down-regulatory effect of steroids on NF-κB activation, iNOS expression, and NO production might partly explain the beneficial effect of steroids in neonates with CLD.


Sign in / Sign up

Export Citation Format

Share Document