scholarly journals Involvement of RhoA/Rho kinase signaling in protection against monocrotaline-induced pulmonary hypertension in pneumonectomized rats by dehydroepiandrosterone

2008 ◽  
Vol 295 (1) ◽  
pp. L71-L78 ◽  
Author(s):  
Noriyuki Homma ◽  
Tetsutaro Nagaoka ◽  
Vijaya Karoor ◽  
Masatoshi Imamura ◽  
Laimute Taraseviciene-Stewart ◽  
...  

RhoA/Rho kinase (ROCK) signaling plays a key role in the pathogenesis of experimental pulmonary hypertension (PH). Dehydroepiandrosterone (DHEA), a naturally occurring steroid hormone, effectively inhibits chronic hypoxic PH, but the responsible mechanisms are unclear. This study tested whether DHEA was also effective in treating monocrotaline (MCT)-induced PH in left pneumonectomized rats and whether inhibition of RhoA/ROCK signaling was involved in the protective effect of DHEA. Three weeks after MCT injection, pneumonectomized rats developed PH with severe vascular remodeling, including occlusive neointimal lesions in pulmonary arterioles. In lungs from these animals, we detected cleaved (constitutively active) ROCK I as well as increases in activities of RhoA and ROCK and increases in ROCK II protein expression. Chronic DHEA treatment (1%, by food for 3 wk) markedly inhibited the MCT-induced PH (mean pulmonary artery pressures after treatment with 0% and 1% DHEA were 33 ± 5 and 16 ± 1 mmHg, respectively) and severe pulmonary vascular remodeling in pneumonectomized rats. The MCT-induced changes in RhoA/ROCK-related protein expression were nearly normalized by DHEA. A 3-wk DHEA treatment (1%) started 3 wk after MCT injection completely inhibited the progression of PH (mean pulmonary artery pressures after treatment with 0% and 1% DHEA were 47 ± 3 and 30 ± 3 mmHg, respectively), and this treatment also resulted in 100% survival in contrast to 30% in DHEA-untreated rats. These results suggest that inhibition of RhoA/ROCK signaling, including the cleavage and constitutive activation of ROCK I, is an important component of the impressive protection of DHEA against MCT-induced PH in pneumonectomized rats.

Author(s):  
Ryan W. Kobs ◽  
Nidal E. Muvarak ◽  
Naomi C. Chesler

Hypobaric hypoxia produces pulmonary hypertension in mice which causes pulmonary vascular remodeling. To study the biomechanics of this process, mice were exposed to hypoxia for 0-(control), 10-, and 15-days. Using a pressurized arteriograph system, mechanical properties of the main pulmonary artery were measured and compared to the biological changes in the vessel wall measured histologically. 10- and 15-day hypoxic vessels were significantly stiffer when compared to 0-day vessels. This stiffness correlated with greater elastin and collagen content in the vessel wall.


2014 ◽  
Vol 306 (3) ◽  
pp. L299-L308 ◽  
Author(s):  
Jason Gien ◽  
Nancy Tseng ◽  
Gregory Seedorf ◽  
Gates Roe ◽  
Steven H. Abman

Peroxisome proliferator-activated receptor-γ (PPARγ) and Rho-kinase (ROCK) regulate smooth muscle cell (SMC) proliferation and contribute to vascular remodeling in adult pulmonary hypertension. Whether these pathways interact to contribute to the development of vascular remodeling in persistent pulmonary hypertension of the newborn (PPHN) remains unknown. We hypothesized that ROCK-PPARγ interactions increase SMC proliferation resulting in vascular remodeling in experimental PPHN. Pulmonary artery SMCs (PASMCs) were harvested from fetal sheep after partial ligation of the ductus arteriosus in utero (PPHN) and controls. Cell counts were performed daily for 5 days with or without PPARγ agonists and ROCK inhibition. PPARγ and ROCK protein expression/activity were measured by Western blot in normal and PPHN PASMCs. We assessed PPARγ-ROCK interactions by studying the effect of ROCK activation on PPARγ activity and PPARγ inhibition (siRNA) on ROCK activity and PASMC proliferation. At baseline, PPHN PASMC cell number was increased by 38% above controls on day 5. ROCK protein expression/activity were increased by 25 and 34% and PPARγ protein/activity decreased by 40 and 50% in PPHN PASMC. ROCK inhibition and PPARγ activation restored PPHN PASMC growth to normal values. ROCK inhibition increased PPARγ activity by 50% in PPHN PASMC, restoring PPARγ activity to normal. In normal PASMCs, ROCK activation decreased PPARγ activity and PPARγ inhibition increased ROCK activity and cell proliferation, resulting in a PPHN hyperproliferative PASMC phenotype. PPARγ-ROCK interactions regulate SMC proliferation and contribute to increased PPHN PASMC proliferation and vascular remodeling in PPHN. Restoring normal PPARγ-ROCK signaling may prevent vascular remodeling and improve outcomes in PPHN.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaopei Cao ◽  
Xiaoyu Fang ◽  
Mingzhou Guo ◽  
Xiaochen Li ◽  
Yuanzhou He ◽  
...  

Abstract Background Hypoxic pulmonary hypertension (PH) is a refractory pulmonary vascular remodeling disease, and the efficiency of current PH treatment strategies is unsatisfactory. Tribbles homolog 3 (TRB3), a member of the pseudokinase family, is upregulated in diverse types of cellular stresses and functions as either a pro-proliferative or pro-apoptotic factor depending on the specific microenvironment. The regulatory mechanisms of TRB3 in hypoxic PH are poorly understood. Methods We performed studies using TRB3-specific silencing and overexpressing lentiviral vectors to investigate the potential roles of TRB3 on hypoxic pulmonary artery smooth muscle cells (PASMCs). Adeno-associated virus type 1(AVV1) vectors encoding short-hairpin RNAs against rat TRB3 were used to assess the role of TRB3 on hypoxic PH. TRB3 protein expression in PH patients was explored in clinical samples by western blot analysis. Results The results of whole-rat genome oligo microarrays showed that the expression of TRB3 and endoplasmic reticulum stress (ERS)-related genes was upregulated in hypoxic PASMCs. TRB3 protein expression was significantly upregulated by hypoxia and thapsigargin. In addition, 4-PBA and 4μ8C, both inhibitors of ERS, decreased the expression of TRB3. TRB3 knockdown promoted apoptosis and damaged the proliferative and migratory abilities of hypoxic PASMCs as well as inhibited activation of the MAPK signaling pathway. TRB3 overexpression stimulated the proliferation and migration of PASMCs but decreased the apoptosis of PASMCs, which was partly reversed by specific inhibitors of ERK, JNK and p38 MAPK. The Co-IP results revealed that TRB3 directly interacts with ERK, JNK, and p38 MAPK. Knockdown of TRB3 in rat lung tissue reduced the right ventricular systolic pressure and decreased pulmonary medial wall thickness in hypoxic PH model rats. Further, the expression of TRB3 in lung tissues was higher in patients with PH compared with those who have normal pulmonary artery pressure. Conclusions TRB3 was upregulated in hypoxic PASMCs and was affected by ERS. TRB3 plays a key role in the pathogenesis of hypoxia-induced PH by binding and activating the ERK, JNK, and p38 MAPK pathways. Thus, TRB3 might be a promising target for the treatment of hypoxic PH.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ai-Ping Wang ◽  
Fang Yang ◽  
Ying Tian ◽  
Jian-Hui Su ◽  
Qing Gu ◽  
...  

Pulmonary hypertension (PH) is a critical and dangerous disease in cardiovascular system. Pulmonary vascular remodeling is an important pathophysiological mechanism for the development of pulmonary arterial hypertension. Pulmonary artery smooth muscle cell (PASMC) proliferation, hypertrophy, and enhancing secretory activity are the main causes of pulmonary vascular remodeling. Previous studies have proven that various active substances and inflammatory factors, such as interleukin 6 (IL-6), IL-8, chemotactic factor for monocyte 1, etc., are involved in pulmonary vascular remodeling in PH. However, the underlying mechanisms of these active substances to promote the PASMC proliferation remain to be elucidated. In our study, we demonstrated that PASMC senescence, as a physiopathologic mechanism, played an essential role in hypoxia-induced PASMC proliferation. In the progression of PH, senescence PASMCs could contribute to PASMC proliferation via increasing the expression of paracrine IL-6 (senescence-associated secretory phenotype). In addition, we found that activated mTOR/S6K1 pathway can promote PASMC senescence and elevate hypoxia-induced PASMC proliferation. Further study revealed that the activation of mTOR/S6K1 pathway was responsible for senescence PASMCs inducing PASMC proliferation via paracrine IL-6. Targeted inhibition of PASMC senescence could effectively suppress PASMC proliferation and relieve pulmonary vascular remodeling in PH, indicating a potential for the exploration of novel anti-PH strategies.


2020 ◽  
Author(s):  
Yanxia Wang ◽  
Xiaoming Li ◽  
Wen Niu ◽  
Jian Chen ◽  
Bo Zhang ◽  
...  

Abstract Background: Hypoxic pulmonary hypertension (HPH) is a common type of pulmonary hypertension. Alveolar epithelial cells (AECs) are the first to perceive hypoxia of alveolar, however, the role of AECs in HPH remain unclear. HPH is characterized by pulmonary vascular remodeling and constriction. The present study was to whether AECs was involved in pulmonary vascular remodeling and constriction.Methods: Rat HPH models were built and pulmonary artery smooth cells (PASMCs) and AECs were treatment with hypoxia. Hemodynamic and morphological indicators were measured in samples from rat HPH models. Superoxide dismutase 2 (SOD2), catalase (CAT) and reactive oxygen species (ROS) were detected in AECs or AECs culture medium. To find out the effect of AECs on pulmonary vascular remodeling and constriction, AECs and PASMCs were co-cultured under hypoxia, PASMCs and isolated pulmonary artery (PA) were treatment with AECs hypoxic culture medium. To explore the mechanism of AECs on pulmonary vascular remodeling and constriction, ROS inhibitor N-acetylcysteine (NAC) was used.Results: In vivo, hypoxia resulted in elevation in pulmonary vascular remodeling and pressure, but had no effect on non-pulmonary vascular. In vitro, hypoxia caused an imbalance of superoxide dismutase 2 (SOD2) and catalase (CAT) and an increase of reactive oxygen species (ROS) in AECs, as well as an increase of hydrogen peroxide (H2O2) in AECs culture medium. Also, AECs led to pulmonary artery smooth cells (PASMCs) proliferation under hypoxia by co-culture or substituting culture medium. AECs hypoxic culture medium enhanced the constriction of isolated pulmonary artery (PA). Further, these responses were abrogated by ROS inhibitor N-acetylcysteine (NAC). Conclusion: The findings of present study demonstrated that AECs involved in pulmonary vascular remodeling and constriction under hypoxia by secreting H2O2 to the pulmonary microenvironment.


Author(s):  
Wang L ◽  
◽  
Shao H ◽  
Che B ◽  
Wang N ◽  
...  

Background and Objectives: Pulmonary Artery Hypertension (PAH) is considered as a malignant tumor in cardiovascular disease. Our previous study found that Calcium-Sensing Receptor (CaSR) is involved in pulmonary vascular remodeling in hypoxic pulmonary hypertension (HPH). However, the relationship of Pulmonary Artery Smooth Muscle Cell (PASMC) phenotypic switching, proliferation, and autophagy in CaSR-related HPH remain unclear. The purpose of this study was to detect the role of a CaSR antagonist, NPS2143, on the vascular remodeling by autophagy modulation under hypoxia. Methods: Hypoxic rat PAH model were simulated in vivo. Meanwhile, mean Pulmonary Artery Pressure (mPAP) was measured while RVI, WT%, and WA% indices were calculated. Immunohistochemistry and Western blot were used to detect phenotypic switching and cell proliferation in pulmonary arteriole. Cell viability was determined in vitro by CCK8 and cell cycle. Cell proliferation, phenotypic switching, autophagy level and PI3K/Akt/mTOR pathways were investigated in human PASMCs through mRNA or Western blot methods. Results: Rats with hypoxic-induced PAH had an increased mPAP, RVI, WT% and WA%. Moreover, expression of CaSR was significantly increased, followed by activation of autophagy (increased LC3b and decreased p62), phenotypic switching of PASMCs (reduced calponin, SMA-a and increased OPN) and pulmonary vascular remodeling. However, NPS2143 weakened these hypoxic effects. The results using hypoxic-induced human PASMCs confirmed that NPS2143 suppressed autophagy and reversed phenotypic switching in vitro by inhibiting PI3K/Akt/mTOR pathways. Conclusions: Our study demonstrates that NPS2143 was conducive to inhibit the proliferation and reverse phenotypic switching of PASMCs by regulating autophagy levels in HPH and vascular remodeling.


2018 ◽  
Vol 315 (6) ◽  
pp. L951-L964 ◽  
Author(s):  
Kelly Stam ◽  
Richard W. van Duin ◽  
André Uitterdijk ◽  
Ilona Krabbendam-Peters ◽  
Oana Sorop ◽  
...  

Pulmonary vascular remodeling in pulmonary arterial hypertension involves perturbations in the nitric oxide (NO) and endothelin-1 (ET-1) pathways. However, the implications of pulmonary vascular remodeling and these pathways remain unclear in chronic thrombo-embolic pulmonary hypertension (CTEPH). The objective of the present study was to characterize changes in microvascular morphology and function, focussing on the ET-1 and NO pathways, in a CTEPH swine model. Swine were chronically instrumented and received up to five pulmonary embolizations by microsphere infusion, whereas endothelial dysfunction was induced by daily administration of the endothelial NO synthase inhibitor Nω-nitro-l-arginine methyl ester until 2 wk before the end of study. Swine were subjected to exercise, and the pulmonary vasculature was investigated by hemodynamic, histological, quantitative PCR, and myograph experiments. In swine with CTEPH, the increased right-ventricular afterload, decreased cardiac index, and mild ventilation-perfusion-mismatch were exacerbated during exercise. Pulmonary microvascular remodeling was evidenced by increased muscularization, which was accompanied by an increased maximal vasoconstriction. Although ET-1-induced vasoconstriction was increased in CTEPH pulmonary small arteries, the ET-1 sensitivity was decreased. Moreover, the contribution of the ETA receptor to ET-1 vasoconstriction was increased, whereas the contribution of the ETB receptor was decreased and the contribution of Rho-kinase was lost. A reduction in endogenous NO production was compensated in part by a decreased phosphodiesterase 5 (PDE5) activity resulting in an apparent increased NO sensitivity in CTEPH pulmonary small arteries. These findings suggest that pulmonary microvascular remodeling with a reduced activity of PDE5 and Rho-kinase may contribute to the lack of therapeutic efficacy of PDE5 inhibitors and Rho-kinase inhibitors in CTEPH.


Author(s):  
Naomi C. Chesler ◽  
John A. Thompson-Figueroa ◽  
Kenneth M. Millburne

Primary pulmonary hypertension (PPH) is a rapidly progressing and often fatal disease that induces substantial pulmonary vascular remodeling [1]. Although a genetic factor has been identified in familial and sporadic cases of pulmonary hypertension [2], the etiology of the disease for most victims remains unknown.


2007 ◽  
Vol 293 (6) ◽  
pp. L1475-L1482 ◽  
Author(s):  
Christine E. Bixby ◽  
Basil O. Ibe ◽  
May F. Abdallah ◽  
Weilin Zhou ◽  
Alison A. Hislop ◽  
...  

Platelet-activating factor (PAF) is implicated in pathogenesis of chronic hypoxia-induced pulmonary hypertension in some animal models and in neonates. Effects of chronic hypoxia on PAF receptor (PAF-R) system in fetal pulmonary vasculature are unknown. We investigated the effect of chronic high altitude hypoxia (HAH) in fetal lambs [pregnant ewes were kept at 3,801 m (12,470 ft) altitude from ∼35 to 145 days gestation] on PAF-R-mediated effects in the pulmonary vasculature. Age-matched controls were kept at sea level. Intrapulmonary arteries were isolated, and smooth muscle cells (SMC-PA) were cultured from HAH and control fetuses. To determine presence of pulmonary vascular remodeling, lung tissue sections were subjected to morphometric analysis. Percentage medial wall thickness was significantly increased ( P < 0.05) in arteries at all levels in the HAH lambs. PAF-R protein expression studied by immunocytochemistry and Western blot analysis on lung tissue SMC-PA demonstrated greater PAF-R expression in HAH lambs. PAF-R binding (femtomoles per 106 cells) in HAH SMC-PA was 90.3 ± 4.08 and 66% greater than 54.3 ± 4.9 in control SMC-PA. Pulmonary arteries from HAH fetuses synthesized >3-fold PAF than vessels from controls. Compared with controls SMC-PA of HAH lambs demonstrated 139% and 40% greater proliferation in 10% FBS alone and with 10 nM PAF, respectively. Our data demonstrate that exposure of ovine fetuses to HAH will result in significant upregulation of PAF synthesis, PAF-R expression, and PAF-R-mediated effects in pulmonary arteries. These findings suggest that increased PAF-R protein expression and increased PAF binding contribute to pulmonary vascular remodeling in these animals and may predispose them to persistent pulmonary hypertension after birth.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yanxia Wang ◽  
Xiaoming Li ◽  
Wen Niu ◽  
Jian Chen ◽  
Bo Zhang ◽  
...  

Abstract Background Hypoxic pulmonary hypertension (HPH) is a common type of pulmonary hypertension and characterized by pulmonary vascular remodeling and constriction. Alveolar epithelial cells (AECs) primarily sense alveolar hypoxia, but the role of AECs in HPH remains unclear. In this study, we explored whether AECs are involved in pulmonary vascular remodeling and constriction. Methods In the constructed rat HPH model, hemodynamic and morphological characteristics were measured. By treating AECs with hypoxia, we further detected the levels of superoxide dismutase 2 (SOD2), catalase (CAT), reactive oxygen species (ROS) and hydrogen peroxide (H2O2), respectively. To detect the effects of AECs on pulmonary vascular remodeling and constriction, AECs and pulmonary artery smooth cells (PASMCs) were co-cultured under hypoxia, and PASMCs and isolated pulmonary artery (PA) were treated with AECs hypoxic culture medium. In addition, to explore the mechanism of AECs on pulmonary vascular remodeling and constriction, ROS inhibitor N-acetylcysteine (NAC) was used. Results Hypoxia caused pulmonary vascular remodeling and increased pulmonary artery pressure, but had little effect on non-pulmonary vessels in vivo. Meanwhile, in vitro, hypoxia promoted the imbalance of SOD2 and CAT in AECs, leading to increased ROS and hydrogen peroxide (H2O2) production in the AECs culture medium. In addition, AECs caused the proliferation of co-cultured PASMCs under hypoxia, and the hypoxic culture medium of AECs enhanced the constriction of isolated PA. However, treatment with ROS inhibitor NAC effectively alleviated the above effects. Conclusion The findings of present study demonstrated that AECs were involved in pulmonary vascular remodeling and constriction under hypoxia by paracrine H2O2 into the pulmonary vascular microenvironment.


Sign in / Sign up

Export Citation Format

Share Document