scholarly journals Acute HIIE elicits similar changes in human skeletal muscle mitochondrial H2O2 release, respiration, and cell signaling as endurance exercise even with less work

2018 ◽  
Vol 315 (5) ◽  
pp. R1003-R1016 ◽  
Author(s):  
Adam J. Trewin ◽  
Lewan Parker ◽  
Christopher S. Shaw ◽  
Danielle S. Hiam ◽  
Andrew Garnham ◽  
...  

It remains unclear whether high-intensity interval exercise (HIIE) elicits distinct molecular responses to traditional endurance exercise relative to the total work performed. We aimed to investigate the influence of exercise intensity on acute perturbations to skeletal muscle mitochondrial function (respiration and reactive oxygen species) and metabolic and redox signaling responses. In a randomized, repeated measures crossover design, eight recreationally active individuals (24 ± 5 yr; V̇o2peak: 48 ± 11 ml·kg−1·min−1) undertook continuous moderate-intensity [CMIE: 30 min, 50% peak power output (PPO)], high-intensity interval (HIIE: 5 × 4 min, 75% PPO, work matched to CMIE), and low-volume sprint interval (SIE: 4 × 30 s) exercise, ≥7 days apart. Each session included muscle biopsies at baseline, immediately, and 3 h postexercise for high-resolution mitochondrial respirometry ( Jo2) and H2O2 emission ( Jh2o2) and gene and protein expression analysis. Immediately postexercise and irrespective of protocol, Jo2 increased during complex I + II leak/state 4 respiration but Jh2o2 decreased ( P < 0.05). AMP-activated protein kinase and acetyl co-A carboxylase phosphorylation increased ~1.5 and 2.5-fold respectively, while thioredoxin-reductase-1 protein abundance was ~35% lower after CMIE vs. SIE ( P < 0.05). At 3 h postexercise, regardless of protocol, Jo2 was lower during both ADP-stimulated state 3 OXPHOS and uncoupled respiration ( P < 0.05) but Jh2o2 trended higher ( P < 0.08) and PPARGC1A mRNA increased ~13-fold, and peroxiredoxin-1 protein decreased ~35%. In conclusion, intermittent exercise performed at high intensities has similar dynamic effects on muscle mitochondrial function compared with endurance exercise, irrespective of whether total workload is matched. This suggests exercise prescription can accommodate individual preferences while generating comparable molecular signals known to promote beneficial metabolic adaptations.

2015 ◽  
Vol 9 ◽  
pp. CMC.S26230 ◽  
Author(s):  
Itamar Levinger ◽  
Christopher S. Shaw ◽  
Nigel K. Stepto ◽  
Samantha Cassar ◽  
Andrew J. McAinch ◽  
...  

High-intensity interval exercise (HIIE) has gained popularity in recent years for patients with cardiovascular and metabolic diseases. Despite potential benefits, concerns remain about the safety of the acute response (during and/or within 24 hours postexercise) to a single session of HIIE for these cohorts. Therefore, the aim of this study was to perform a systematic review to evaluate the safety of acute HIIE for people with cardiometabolic diseases. Electronic databases were searched for studies published prior to January 2015, which reported the acute responses of patients with cardiometabolic diseases to HIIE (≥80% peak power output or ≥85% peak aerobic power, VO2peak). Eleven studies met the inclusion criteria (n = 156; clinically stable, aged 27-66 years), with 13 adverse responses reported (~8% of individuals). The rate of adverse responses is somewhat higher compared to the previously reported risk during moderate-intensity exercise. Caution must be taken when prescribing HIIE to patients with cardiometabolic disease. Patients who wish to perform HIIE should be clinically stable, have had recent exposure to at least regular moderate-intensity exercise, and have appropriate supervision and monitoring during and after the exercise session.


2018 ◽  
Vol 43 (12) ◽  
pp. 1233-1238 ◽  
Author(s):  
Aaron L. Slusher ◽  
Michael Whitehurst ◽  
Arun Maharaj ◽  
Katelyn M. Dodge ◽  
Brandon G. Fico ◽  
...  

Pentraxin 3 (PTX3) is mainly synthesized and released by neutrophils to help regulate innate immunity. While plasma PTX3 concentrations are associated with improved glucose metabolism and overall metabolic health, there is evidence that significant elevations in plasma glucose downregulate circulating levels of PTX3. To examine whether this relationship would be altered in response to exercise, this study investigated the kinetics of the plasma glucose and PTX3 responses following high-intensity interval exercise (HIIE) and continuous moderate-intensity exercise (CMIE). It was hypothesized that the increased concentrations of plasma glucose following HIIE compared with CMIE would be associated with an attenuated plasma PTX3 response. Eight healthy male subjects participated in both HIIE and CMIE protocols administered as a randomized, counterbalanced design. Linear mixed models for repeated measures revealed that the overall plasma glucose response was greater following HIIE compared with CMIE (protocol × time effect: p = 0.037). Although the plasma PTX3 response was higher only at 19 min into HIIE compared with CMIE (protocol × time effect: p = 0.013), no relationships were observed between plasma glucose and PTX3 either at baseline or in response to both exercise protocols, as indicated by the area under the curve “with respect to increase” analysis. Our results indicate that exercise-mediated plasma PTX3 concentrations are independent of the plasma glucose response. In addition, the present study suggests that the neutrophil-mediated innate immune response, as indicated by plasma PTX3 response, may be activated earlier during HIIE compared with CMIE.


2020 ◽  
Vol 105 (8) ◽  
pp. e2941-e2959 ◽  
Author(s):  
Benjamin J Ryan ◽  
Michael W Schleh ◽  
Cheehoon Ahn ◽  
Alison C Ludzki ◽  
Jenna B Gillen ◽  
...  

Abstract Objective We compared the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on insulin sensitivity and other important metabolic adaptations in adults with obesity. Methods Thirty-one inactive adults with obesity (age: 31 ± 6 years; body mass index: 33 ± 3 kg/m2) completed 12 weeks (4 sessions/week) of either HIIT (10 × 1-minute at 90%HRmax, 1-minute active recovery; n = 16) or MICT (45 minutes at 70%HRmax; n = 15). To assess the direct effects of exercise independent of weight/fat loss, participants were required to maintain body mass. Results Training increased peak oxygen uptake by ~10% in both HIIT and MICT (P &lt; 0.0001), and body weight/fat mass were unchanged. Peripheral insulin sensitivity (hyperinsulinemic-euglycemic clamp) was ~20% greater the day after the final exercise session compared to pretraining (P &lt; 0.01), with no difference between HIIT and MICT. When trained participants abstained from exercise for 4 days, insulin sensitivity returned to pretraining levels in both groups. HIIT and MICT also induced similar increases in abundance of many skeletal muscle proteins involved in mitochondrial respiration and lipid and carbohydrate metabolism. Training-induced alterations in muscle lipid profile were also similar between groups. Conclusion Despite large differences in training intensity and exercise time, 12 weeks of HIIT and MICT induce similar acute improvements in peripheral insulin sensitivity the day after exercise, and similar longer term metabolic adaptations in skeletal muscle in adults with obesity. These findings support the notion that the insulin-sensitizing effects of both HIIT and MICT are mediated by factors stemming from the most recent exercise session(s) rather than adaptations that accrue with training.


2016 ◽  
Vol 120 (11) ◽  
pp. 1319-1327 ◽  
Author(s):  
Peter M. Christensen ◽  
Robert A. Jacobs ◽  
Thomas Bonne ◽  
Daniela Flück ◽  
Jens Bangsbo ◽  
...  

The aim of the present study was to examine whether improvements in pulmonary oxygen uptake (V̇o2) kinetics following a short period of high-intensity training (HIT) would be associated with improved skeletal muscle mitochondrial function. Ten untrained male volunteers (age 26 ± 2 yr; mean ± SD) performed six HIT sessions (8-12 × 60 s at incremental test peak power; 271 ± 52 W) over a 2-wk period. Before and after the HIT period, V̇o2 kinetics was modeled during moderate-intensity cycling (110 ± 19 W). Mitochondrial function was assessed with high-resolution respirometry (HRR), and maximal activities of oxidative enzymes citrate synthase (CS) and cytochrome c oxidase (COX) were accordingly determined. In response to HIT, V̇o2 kinetics became faster (τ: 20.4 ± 4.4 vs. 28.9 ± 6.1 s; P < 0.01) and fatty acid oxidation (ETFP) and leak respiration (LN) both became elevated ( P < 0.05). Activity of CS and COX did not increase in response to training. Both before and after the HIT period, fast V̇o2 kinetics (low τ values) was associated with large values for ETFP, electron transport system capacity (ETS), and electron flow specific to complex II (CIIP) ( P < 0.05). Collectively, these findings support that selected measures of mitochondrial function obtained with HRR are important for fast V̇o2 kinetics and better markers than maximal oxidative enzyme activity in describing the speed of the V̇o2 response during moderate-intensity exercise.


2017 ◽  
Vol 313 (2) ◽  
pp. E243-E256 ◽  
Author(s):  
Rachel A. H. Davis ◽  
Jacob E. Halbrooks ◽  
Emily E. Watkins ◽  
Gordon Fisher ◽  
Gary R. Hunter ◽  
...  

Calorie restriction (CR) decreases adiposity, but the magnitude and defense of weight loss is less than predicted due to reductions in total daily energy expenditure (TEE). The purpose of the current investigation was to determine whether high-intensity interval training (HIIT) would increase markers of sympathetic activation in white adipose tissue (WAT) and rescue CR-mediated reductions in EE to a greater extent than moderate-intensity aerobic exercise training (MIT). Thirty-two 5-wk-old male C57BL/6J mice were placed on ad libitum HFD for 11 wk, followed by randomization to one of four groups ( n = 8/group) for an additional 15 wk: 1) CON (remain on HFD), 2) CR (25% lower energy intake), 3) CR + HIIT (25% energy deficit created by 12.5% CR and 12.5% EE through HIIT), and 4) CR + MIT (25% energy deficit created by 12.5% CR and 12.5% EE through MIT). Markers of adipose thermogenesis ( Ucp1, Prdm16, Dio2, and Fgf21) were unchanged in either exercise group in inguinal or epididymal WAT, whereas CR + HIIT decreased Ucp1 expression in retroperitoneal WAT and brown adipose tissue. HIIT rescued CR-mediated reductions in lean body mass (LBM) and resting energy expenditure (REE), and both were associated with improvements in glucose/insulin tolerance. Improvements in glucose metabolism in the CR + HIIT group appear to be linked to a molecular signature that enhances glucose and lipid storage in skeletal muscle. Exercise performed at either moderate or high intensity does not increase markers of adipose thermogenesis when performed in the presence of CR but remodels skeletal muscle metabolic and thermogenic capacity.


2021 ◽  
Vol 2021 ◽  
pp. 1-28
Author(s):  
Lu Luo ◽  
Meixi Liu ◽  
Hongyu Xie ◽  
Yunhui Fan ◽  
Jingjun Zhang ◽  
...  

Although skeletal muscle is the main effector organ largely accounting for disability after stroke, considerably less attention is paid to the secondary abnormalities of stroke-related skeletal muscle loss. It is necessary to explore the mechanism of muscle atrophy after stroke and further develop effective rehabilitation strategy. Here, we evaluated the effects of high-intensity interval (HIIT) versus moderate-intensity aerobic training (MOD) on physical function, muscle mass, and stroke-related gene expression profile of skeletal muscle. After the model of middle cerebral artery occlusion (MCAO) was successfully made, the blood lactate threshold corresponding speed ( S LT ) and maximum speed ( S max ) were measured. Different intensity training protocols ( MOD < S LT ; S LT < HIIT < S max ) were carried out for 3 weeks beginning at 7 days after MCAO in the MOD and HIIT groups, respectively. We found that both HIIT and MOD prevented stroke-related gastrocnemius muscle mass loss in MCAO mice. HIIT was more beneficial than MOD for improvements in muscle strength, motor coordination, walking competency, and cardiorespiratory fitness. Furthermore, HIIT was superior to MOD in terms of reducing lipid accumulation, levels of IL-1β and IL-6 in paretic gastrocnemius, and improving peripheral blood CD4+/CD8+ T cell ratio, level of IL-10. Additionally, RNA-seq analysis revealed that the differentially expressed genes among HIIT, MOD, and MCAO groups were highly associated with signaling pathways involved in inflammatory response, more specifically the I-kappaB kinase/NF-kappaB signaling. Following the outcome, we further investigated the infiltrating immune cells abundant in paretic muscles. The results showed that HIIT modulated macrophage activation by downregulating CD86+ (M1 type) macrophages and upregulating CD163+ (M2 type) macrophages via inhibiting the TLR4/MyD88/NFκB signaling pathway and exerting an anti-inflammatory effect in paretic skeletal muscle. It is expected that these data will provide novel insights into the mechanisms and potential targets underlying muscle wasting in stroke.


Sign in / Sign up

Export Citation Format

Share Document