scholarly journals Neuropeptide Y and neurovascular control in skeletal muscle and skin

2009 ◽  
Vol 297 (3) ◽  
pp. R546-R555 ◽  
Author(s):  
Gary J. Hodges ◽  
Dwayne N. Jackson ◽  
Louis Mattar ◽  
John M. Johnson ◽  
J. Kevin Shoemaker

Neuropeptide Y (NPY) is a ubiquitous peptide with multiple effects on energy metabolism, reproduction, neurogenesis, and emotion. In addition, NPY is an important sympathetic neurotransmitter involved in neurovascular regulation. Although early studies suggested that the vasoactive effects of NPY were limited to periods of high stress, there is growing evidence for the involvement of NPY on baseline vasomotor tone and sympathetically evoked vasoconstriction in vivo in both skeletal muscle and the cutaneous circulation. In Sprague-Dawley rat skeletal muscle, Y1-receptor activation appears to play an important role in the regulation of basal vascular conductance, and this effect is similar in magnitude to the α1-receptor contribution. Furthermore, under baseline conditions, agonist and receptor-based mechanisms for Y1-receptor-dependent control of vascular conductance in skeletal muscle are greater in male than female rats. In skin, there is Y1-receptor-mediated vasoconstriction during whole body, but not local, cooling. As with the NPY system in muscle, this neural effect in skin differs between males and females and in addition, declines with aging. Intriguingly, skin vasodilation to local heating also requires NPY and is currently thought to be acting via a nitric oxide pathway. These studies are establishing further interest in the role of NPY as an important vasoactive agent in muscle and skin, adding to the complexity of neurovascular regulation in these tissues. In this review, we focus on the role of NPY on baseline vasomotor tone in skeletal muscle and skin and how NPY modulates vasomotor tone in response to stress, with the aim of compiling what is currently known, while highlighting some of the more pertinent questions yet to be answered.

2020 ◽  
Vol 319 (1) ◽  
pp. H192-H202
Author(s):  
Alexander B. Hansen ◽  
Gilbert Moralez ◽  
Steven A. Romero ◽  
Christopher Gasho ◽  
Michael M. Tymko ◽  
...  

Sympathetic restraint of vascular conductance to inactive skeletal muscle is critical to maintain blood pressure during moderate- to high-intensity whole body exercise. This investigation shows that cycle exercise-induced restraint of inactive skeletal muscle vascular conductance occurs primarily because of activation of α-adrenergic receptors. Furthermore, exercise-induced vasoconstriction restrains the subsequent vasodilatory response to hand-grip exercise; however, the restraint of active skeletal muscle vasodilation was in part due to nonadrenergic mechanisms. We conclude that α-adrenergic receptors are the primary but not exclusive mechanism by which sympathetic vasoconstriction restrains blood flow in humans during whole body exercise and that metabolic activity modulates the contribution of α-adrenergic receptors.


2010 ◽  
Vol 298 (5) ◽  
pp. R1351-R1357 ◽  
Author(s):  
Dwayne N. Jackson ◽  
Christopher G. Ellis ◽  
J. Kevin Shoemaker

The purpose of this study was to determine the role of estrogen in neuropeptide Y (NPY) and Y1 receptor (Y1R)-mediated vascular responses in female rats. Based on earlier work from our laboratory that female rats lacked an NPY contribution to hindlimb vascular conductance relative to males, we tested the hypothesis that estrogen modulates Y1R-mediated hindlimb blood flow control. Thus it was expected that ovariectomy would: 1) increase skeletal muscle Y1R expression, 2) decrease skeletal muscle Y2 receptor (Y2R) expression, 3) decrease peptidase activity, and/or 4) increase overall skeletal muscle NPY concentration. Separate groups of control (CTL), ovariectomized (OVX), and OVX + 17β-estradiol replacement (OVX + E2; 21-day pellet) rats were studied. Animals were anesthetized and given localized hindlimb delivery of BIBP-3226 (Y1R antagonist), while femoral artery blood flow and blood pressure were recorded. Tissue samples from the white and red vastus lateralis muscle were extracted to examine Y1R and Y2R expression, peptidase activity, and NPY concentration. We found that Y1R blockade resulted in increased baseline hindlimb blood flow and vascular conductance in OVX rats, whereas no change was noted in CTL or OVX + E2 groups ( P < 0.05). This enhanced functional effect in the OVX group aligned with greater skeletal muscle Y1R expression in white vastus muscle and a substantial increase in NPY concentration in both white and red vastus muscle compared with CTL and OVX + E2 groups. There was no change in Y2R expression or peptidase activity among the groups. These data support the hypothesis that estrogen blunts Y1R activation in the rat hindlimb through an effect on Y1R expression and NPY concentration.


2018 ◽  
Vol 28 (12) ◽  
pp. 2494-2504 ◽  
Author(s):  
Sune Dandanell ◽  
Anne-Kristine Meinild-Lundby ◽  
Andreas B. Andersen ◽  
Paul F. Lang ◽  
Laura Oberholzer ◽  
...  

2000 ◽  
Vol 279 (2) ◽  
pp. H726-H732 ◽  
Author(s):  
Don D. Sheriff ◽  
Christopher D. Nelson ◽  
Ryan K. Sundermann

We sought to test the role of nitric oxide (NO) in governing skeletal muscle (iliac) vascular conductance during treadmill locomotion in dogs ( n = 6; 3.2 and 6.4 km/h at 0% grade, and 6.4 km/h at 10% grade). As seen previously, the increase in muscle vascular conductance accompanying treadmill locomotion was little influenced by NO synthase inhibition alone with N ω-nitro-l-arginine methyl ester (l-NAME, 10 mg/kg iv), but the absolute value of conductance achieved during locomotion was reduced. Such ambiguous results provide an unclear picture regarding the importance of NO during locomotion. However, muscle vasodilation is normally restrained by the sympathetic system during locomotion. Thus a significant contribution by NO to the increase in vascular conductance that accompanies locomotion could be masked by partial withdrawal of the competing influence of sympathetic vasoconstrictor nerve activity secondary to the rise in arterial pressure following systemicl-NAME administration. To test this possibility, we compared the rise in muscle vascular conductance before and afterl-NAME treatment while ganglionic transmission was blocked by hexamethonium. Under these conditions, l-NAME significantly reduced both the rise in vascular conductance (by 32%, P < 0.001) and the absolute level of vascular conductance (by 30%, P < 0.001) achieved during locomotion with no effect on blood flow. Thus augmented NO production normally provides a significant drive to relax vascular smooth muscle in active skeletal muscle during locomotion. Potential deficits stemming from the absence of NO following l-NAME treatment are masked by less intense sympathetic restraint when autonomic function is intact.


1982 ◽  
Vol 62 (1) ◽  
pp. 123-132 ◽  
Author(s):  
V. A. GREGG ◽  
L. P. MILLIGAN

The role of Na+, K+-ATPase in the energy expenditure of sheep skeletal muscle and the influence of exposure to cold on this role were studied. An in vitro preparation of muscle was developed that achieved O2 availability and a functional membrane potential. A 10−6 M concentration of ouabain yielded a maximum inhibition of respiration of 38.9 ± 1.8% using muscle preparations from a random group of sheep. Whole body and muscle O2 consumptions and ouabain-sensitive muscle respiration were measured for warm- and cold-exposed sheep fed at maintenance or 1150 g of alfalfa pellets per day. Cold exposure increased whole body and muscle O2 consumption. Inhibition of respiration by ouabain was 37.6 ± 1.2% and 41.0 ± 3.6% for warm- and cold-exposed sheep fed at maintenance, and 28.5 ± 4.0% and 45.0 ± 4.0% for warm- and cold-exposed sheep fed 1150 g of alfalfa pellets per day. The increase in the ouabain-sensitive component of respiration accounted for 48–79% of the increased O2 consumption of muscle from cold-exposed sheep. It was concluded that the Na+, K+-ATPase of sheep muscle is a major means of energy expenditure and has an important role in the increased thermogenesis resulting from cold exposure. Key words: Skeletal muscle, Energy expenditure, muscle respiration, cold thermogenesis, sodium-potassium transport


1996 ◽  
Vol 148 (3) ◽  
pp. 447-455 ◽  
Author(s):  
R D Kineman ◽  
T W Gettys ◽  
L S Frawley

Abstract It is clear that dopamine (DA) at high concentrations (>100 nmol/l) inhibits the release of prolactin (PRL). Paradoxically, this monoamine at low concentrations (<10 nmol/l) has also been shown to augment PRL secretion. One possible explanation for these divergent effects is that DA binds receptors capable of interacting with multiple G protein subtypes that recruit opposing intracellular signaling pathways within lactotropes. To identify G proteins which couple DA receptor activation to PRL secretion, we have selectively immunoneutralized the activity of Giα3 and Gsα in primary cultures of rat pituitaries and subsequently tested the ability of these cultures to respond to high and low dose DA. Specifically, permeabilized pituitary cell cultures from random-cycling female rats were treated with control immunoglobulins (IgGs; 50 μg/ml) purified from preimmune serum (PII) or IgGs directed against the C-terminal portion of Giα3 or Gsα. After immunoneutralization of these G proteins, cells were challenged with 10 or 1000 nmol Da/l and the relative amount of PRL released was assessed by reverse hemolytic plaque assay. Results were expressed as % of basal values and compared. Under control conditions (PII), 1000 nmol DA/l inhibited (61·4 ±7·6% of basal values; mean ± s.e.m.) while 10 nmol DA/l augmented (120·0 ± 7·0%) PRL release in five separate experiments. Treatment of cells with anti-Giα3 attenuated the inhibitory effect of high dose DA (87·3 ± 14·5%). However, elimination of Giα3 activity did not significantly alter the PRL stimulatory effect of 10 nmol DA/l (121·0 ± 5·2%). Interestingly, immunoneutralization of Gsα resulted in a reciprocal shift in the activity of the lower dose of DA from stimulatory to inhibitory (69·7 ± 7·3%) while combined treatment of anti-Giα3 and anti-Gsα abrogated the responsiveness of pituitary cell cultures to either DA treatment (1000 nmol/l, 70·7 ± 12·5% and 10 nmol/l, 87·5 ± 21·4%). These data reveal that ligand-activated DA receptors can interact with both Giα3 and Gsα. Elimination of the stimulatory component (Gsα) favors the DA receptor activation of the inhibitory pathway (Giα3) suggesting a competition between negative and positive intracellular signaling mechanisms in normal lactotropes. In addition to DA treatment, we also challenged permeabilized pituitary cells with 100 nmol thyrotropin-releasing hormone (TRH)/1 as a positive control for secretory integrity. As anticipated, TRH stimulated PRL release to 188·0±31·0% of basal values under control conditions. Unexpectedly, immunoneutralization of Gsα completely blocked the ability of TRH to induce PRL release (101·8 ± 12·0% This neutralizing effect was specific to Gsα in that blockade of Giα3 activity had no significant effect on TRH-stimulated PRL release (166·2 ± 13·1%). These data are the first to support a direct role of Gsα in TRH signal transduction within PRL-secreting cells. Journal of Endocrinology (1996) 148, 447–455


2020 ◽  
Vol 53 (1) ◽  
Author(s):  
Yuri Okazaki ◽  
Jennifer Murray ◽  
Ali Ehsani ◽  
Jessica Clark ◽  
Robert H. Whitson ◽  
...  

Abstract Background Skeletal muscle has an important role in regulating whole-body energy homeostasis, and energy production depends on the efficient function of mitochondria. We demonstrated previously that AT-rich interactive domain 5b (Arid5b) knockout (Arid5b−/−) mice were lean and resistant to high-fat diet (HFD)-induced obesity. While a potential role of Arid5b in energy metabolism has been suggested in adipocytes and hepatocytes, the role of Arid5b in skeletal muscle metabolism has not been studied. Therefore, we investigated whether energy metabolism is altered in Arid5b−/− skeletal muscle. Results Arid5b−/− skeletal muscles showed increased basal glucose uptake, glycogen content, glucose oxidation and ATP content. Additionally, glucose clearance and oxygen consumption were upregulated in Arid5b−/− mice. The expression of glucose transporter 1 (GLUT1) and 4 (GLUT4) in the gastrocnemius (GC) muscle remained unchanged. Intriguingly, the expression of TBC domain family member 1 (TBC1D1), which negatively regulates GLUT4 translocation to the plasma membrane, was suppressed in Arid5b−/− skeletal muscle. Coimmunofluorescence staining of the GC muscle sections for GLUT4 and dystrophin revealed increased GLUT4 localization at the plasma membrane in Arid5b−/− muscle. Conclusions The current study showed that the knockout of Arid5b enhanced glucose metabolism through the downregulation of TBC1D1 and increased GLUT4 membrane translocation in skeletal muscle.


2009 ◽  
Vol 201 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Camilla Alexanderson ◽  
Elias Eriksson ◽  
Elisabet Stener-Victorin ◽  
Malin Lönn ◽  
Agneta Holmäng

Early postnatal events can predispose to metabolic and endocrine disease in adulthood. In this study, we evaluated the programming effects of a single early postnatal oestradiol injection on insulin sensitivity in adult female rats. We also assessed the expression of genes involved in inflammation and glucose metabolism in skeletal muscle and adipose tissue and analysed circulating inflammation markers as possible mediators of insulin resistance. Neonatal oestradiol exposure reduced insulin sensitivity and increased plasma levels of monocyte chemoattractant protein-1 (MCP-1) and soluble intercellular adhesion molecule-1. In skeletal muscle, oestradiol increased the expression of genes encoding complement component 3 (C3), Mcp-1, retinol binding protein-4 (Rbp4) and transforming growth factor β1 (Tgfβ1). C3 and MCP-1 are both related to insulin resistance, and C3, MCP-1 and TGFβ1 are also involved in inflammation. Expression of genes encoding glucose transporter-4 (Glut 4), carnitine-palmitoyl transferase 1b (Cpt1b), peroxisome proliferator-activated receptor δ (Ppard) and uncoupling protein 3 (Ucp3), which are connected to glucose uptake, lipid oxidation, and energy uncoupling, was down regulated. Expression of several inflammatory genes in skeletal muscle correlated negatively with whole-body insulin sensitivity. In s.c. inguinal adipose tissue, expression of Tgfβ1, Ppard and C3 was decreased, while expression of Rbp4 and Cpt1b was increased. Inguinal adipose tissue weight was increased but adipocyte size was unaltered, suggesting an increased number of adipocytes. We suggest that early neonatal oestrogen exposure may reduce insulin sensitivity by inducing chronic, low-grade systemic and skeletal muscle inflammation and disturbances of glucose and lipid metabolism in skeletal muscle in adulthood.


1993 ◽  
Vol 264 (3) ◽  
pp. E398-E402 ◽  
Author(s):  
M. Dey ◽  
M. Michalkiewicz ◽  
L. J. Huffman ◽  
G. A. Hedge

It has been suggested that thyroid blood flow (TBF) is regulated by both parasympathetic and sympathetic nerves. Because thyroxine (T4) pretreatment increases the sensitivity of the thyroid to the effects of thyrotropin, the present study was conducted to determine whether T4 pretreatment can also sensitize the thyroid to the effect of parasympathetic stimulation on TBF. Untreated or T4-pretreated rats were anesthetized, and both superior laryngeal nerves (SLN) were transected. TBF was continuously monitored by laser Doppler flowmetry (LDF), and thyroid vascular conductance (TVC) was also determined by the microsphere technique. Stimulation of the SLN had no effect on TBF or TVC in untreated rats when measured by LDF or microspheres. In contrast, stimulation of the SLN after T4 pretreatment increased TBF by 65 +/- 21% over prestimulus levels as measured by LDF. TVC was also increased significantly (P < 0.05) in these rats compared with TVC in a nonstimulated T4-pretreated group. To examine the role of muscarinic receptor activation in the mediation of these increases in TVC, T4 pretreated rats were given saline or atropine prior to SLN transection. Stimulation of the SLN in T4-pretreated rats given saline increased TVC significantly (P < 0.05) compared with TVC in the nonstimulated saline-treated or atropine-treated group. In contrast, TVC in the stimulated group given saline was not significantly different from the group that was stimulated after atropine injection. Our results suggest that the thyroidal vascular responsiveness to parasympathetic stimulation is increased in the hyperthyroid condition.


Sign in / Sign up

Export Citation Format

Share Document