Use of a carbonic anhydrase Ca17a knockout to investigate mechanisms of ion uptake in zebrafish (Danio rerio)

2021 ◽  
Vol 320 (1) ◽  
pp. R55-R68
Author(s):  
Alex M. Zimmer ◽  
Milica Mandic ◽  
Hong Meng Yew ◽  
Emma Kunert ◽  
Yihang K. Pan ◽  
...  

In fishes, branchial cytosolic carbonic anhydrase (CA) plays an important role in ion and acid-base regulation. The Ca17a isoform in zebrafish ( Danio rerio) is expressed abundantly in Na+-absorbing/H+-secreting H+-ATPase-rich (HR) cells. The present study aimed to identify the role of Ca17a in ion and acid-base regulation across life stages using CRISPR/Cas9 gene editing. However, in preliminary experiments, we established that ca17a knockout is lethal with ca17a−/− mutants exhibiting a significant decrease in survival beginning at ∼12 days postfertilization (dpf) and with no individuals surviving past 19 dpf. Based on these findings, we hypothesized that ca17a−/− mutants would display alterations in ion and acid-base balance and that these physiological disturbances might underlie their early demise. Na+ uptake rates were significantly increased by up to 300% in homozygous mutants compared with wild-type individuals at 4 and 9 dpf; however, whole body Na+ content remained constant. While Cl− uptake was significantly reduced in ca17a−/− mutants, Cl− content was unaffected. Reduction of CA activity by Ca17a morpholino knockdown or ethoxzolamide treatments similarly reduced Cl− uptake, implicating Ca17a in the mechanism of Cl− uptake by larval zebrafish. H+ secretion, O2 consumption, CO2 excretion, and ammonia excretion were generally unaltered in ca17a−/− mutants. In conclusion, while the loss of Ca17a caused marked changes in ion uptake rates, providing strong evidence for a Ca17a-dependent Cl− uptake mechanism, the underlying causes of the lethality of this mutation in zebrafish remain unclear.

1961 ◽  
Vol 201 (6) ◽  
pp. 980-986 ◽  
Author(s):  
Hisato Yoshimura ◽  
Masateru Yata ◽  
Minoru Yuasa ◽  
Robert A. Wolbach

Renal mechanisms for the maintenance of acid-base balance were studied in the normal bullfrog, during metabolic and respiratory acidosis, and after carbonic anhydrase inhibition. Following intravenous administration of 0.3–12 mmole HCl/ kg, as 0.1 n HCl, urinary pH (initially pH 6.3–7.7) did not change significantly. However, urinary ammonia excretion increased more than twofold, and within 3–5 days the cumulative increase was equivalent to the acid load given. Despite the increased ammonia excretion, chloride excretion did not increase after acid loading. In both normal and acidotic bullfrogs ammonia excretion was correlated with an increase in urinary pH. Respiratory acidosis in the small frog, Rana limnocharis, produced by exposure to 6.4% CO2 in air, induced neither urinary acidification nor increased ammonia excretion; both urinary sodium and bicarbonate excretion increased. When renal carbonic anhydrase was inhibited by acetazoleamide injection, urine flow, sodium excretion, and bicarbonate excretion increased markedly, urinary pH increased slightly, and urinary ammonia excretion remained unchanged. These renal responses to acidosis are compared with those of the acidotic dog.


2017 ◽  
Vol 312 (4) ◽  
pp. F647-F653 ◽  
Author(s):  
Troels Ring ◽  
Søren Nielsen

The textbook account of whole body acid-base balance in terms of endogenous acid production, renal net acid excretion, and gastrointestinal alkali absorption, which is the only comprehensive model around, has never been applied in clinical practice or been formally validated. To improve understanding of acid-base modeling, we managed to write up this conventional model as an expression solely on urine chemistry. Renal net acid excretion and endogenous acid production were already formulated in terms of urine chemistry, and we could from the literature also see gastrointestinal alkali absorption in terms of urine excretions. With a few assumptions it was possible to see that this expression of net acid balance was arithmetically identical to minus urine charge, whereby under the development of acidosis, urine was predicted to acquire a net negative charge. The literature already mentions unexplained negative urine charges so we scrutinized a series of seminal papers and confirmed empirically the theoretical prediction that observed urine charge did acquire negative charge as acidosis developed. Hence, we can conclude that the conventional model is problematic since it predicts what is physiologically impossible. Therefore, we need a new model for whole body acid-base balance, which does not have impossible implications. Furthermore, new experimental studies are needed to account for charge imbalance in urine under development of acidosis.


1978 ◽  
Vol 39 (1) ◽  
pp. 99-104 ◽  
Author(s):  
J. Okumura ◽  
D. Hewitt ◽  
Marie E. Coates

1. Groups of three colostomized germ-free (GF) and conventional (CV) chickens aged 4 months were maintained for successive periods of 8 d on a diet containing 200 g casein/kg without and with sodium bicarbonate at the rate of 20 mmol/d and a nitrogen-free diet without and with NaHCO3at 9 mmol/d. Urine and faeces were collected during the last 3 d of each period.2. Total N, uric acid- and ammonia-N were determined in urine and total N in faeces. Amino acids were measured in hydrolysates of faeces collected during the periods when no NaHCO3was included in the diets.3. The CV birds excreted more N on the casein diets but less on the N-free diets than did their GF counterparts, the differences being mainly shown in the urine.4. On both diets hydrolysates of the faeces of CV birds contained smaller amounts of amino acids. On the N-free diet the proportions (g/160 g N) of serine, proline and threonine were reduced, suggesting some conservation of endogenous N by micro-organisms, and the proportions of histidine, alanine, lysine and methionine increased, possibly through microbial synthesis; on the casein diet, proportions of most amino acids were less, probably because bacterial deamination had occurred.5. Urinary excretion of total N, uric acid and ammonia was much greater on the casein than on the N-free diets. Inclusion of NaHCO3caused a sharp fall in urinary ammonia on both diets and in both environments.6. It was concluded that the level of dietary protein and the regulation of acid-base balance have more effect than microbial activity on the urinary ammonia excretion.


2015 ◽  
Author(s):  
Muhammad Yousuf Ali ◽  
Ana Pavasovic ◽  
Peter B Mather ◽  
Peter J Prentis

Osmoregulation and systemic acid-base balance in decapod crustaceans are largely controlled by a set of transport-related enzymes including carbonic anhydrase (CA), Na + /K + -ATPase (NKA) and V-type- H + -ATPase (HAT). Variable pH levels and changes in osmotic pressure can have a significant impact on the physiology and behaviour of crustaceans. Therefore, it is crucial to understand the mechanisms via which an animal can maintain its internal pH balance and regulate the movement of ions into and out of its cells. Here, we examined expression patterns of the cytoplasmic (CAc) and membrane-associated form (CAg) of CA, NKA α subunit and HAT subunit a in gills of the freshwater crayfish Cherax quadricarinatus. Expression levels of the genes were measured at three pH levels, pH 6.2, 7.2 (control) and 8.2 over a 24 hour period. All genes showed significant differences in expression levels, either among pH treatments or over time. Expression levels of CAc were significantly increased at low pH and decreased at high pH conditions 24 h after transfer to these treatments. Expression increased in low pH after 12 h, and reached their maximum level by 24 h. The membrane-associated form CAg showed changes in expression levels more quickly than CAc. Expression increased for CAg at 6 h post transfer at both low and high pH conditions, but expression remained elevated only at low pH (6.2) at the end of the experiment. Expression of CqNKA significantly increased at 6 h after transfer to pH 6.2 and remained elevated up to 24 h. Expression for HAT and NKA showed similar patterns, where expression significantly increased 6 h post transfer to the low pH conditions and remained significantly elevated throughout the experiment. The only difference in expression between the two genes was that HAT expression decreased significantly 24 h post transfer to high pH conditions. Overall, our data suggest that CAc, CAg, NKA and HAT gene expression is induced at low pH conditions in freshwater crayfish. Further research should examine the physiological underpinnings of these changes in expression to better understand systemic acid/base balance in freshwater crayfish.


2017 ◽  
Vol 95 (9) ◽  
pp. 623-632 ◽  
Author(s):  
Aida Adlimoghaddam ◽  
Michael J. O’Donnell ◽  
Alex Quijada-Rodriguez ◽  
Dirk Weihrauch

Cation/proton exchangers of the cation proton antiporter 1 (CPA1) subfamily (NHEs, SLC 9) play an important role in many physiological processes, including cell volume regulation, acid–base homeostasis, and ammonia excretion. The soil nematode Caenorhabditis elegans (Maupas, 1900) (N2, 1968) expresses nine paralogues (NHX-1 to NHX-9). The current study was undertaken to investigate the role of the cation/proton exchanger in hypodermal Na+ and H+ fluxes, as well in ammonia excretion processes. Measurements using SIET (scanning ion-selective electrode technique) showed that the hypodermis promotes H+ secretion and Na+ uptake. Inhibitory effects on fluxes were observed upon application of amiloride but not EIPA, suggesting that NHXs are not involved in the transport processes. In response to stress induced by starvation or exposure to 1 mmol·L−1 NH4Cl, pH 5.5, or pH 8.0, body pH stayed fairly constant, with changes in mRNA expression levels detected in intestinal NHX-2 and hypodermal NHX-3. In conclusion, the study suggest that hypodermal apically localized EIPA-sensitive Na+/H+ exchangers do not likely play a role in ammonia excretion and Na+ uptake in the hypodermis of C. elegans, whereas apical amiloride-sensitive Na+ channels seem to be involved not just in hypodermal Na+ uptake but indirectly also in NH4+ and H+ excretion.


2009 ◽  
Vol 296 (5) ◽  
pp. R1392-R1401 ◽  
Author(s):  
Ruslan Tiniakov ◽  
Karie E. Scrogin

The 5-HT1A receptor agonist, 8- OH-DPAT, increases whole body venous tone (mean circulatory filling pressure; MCFP), and attenuates metabolic acidosis in a rat model of unresuscitated hemorrhagic shock. To determine whether improved acid-base balance was associated with sympathetic activation and venous constriction, MCFP, sympathetic activity (SA), and blood gases were compared in hemorrhaged rats following administration of 5-HT1A receptor agonist 8-OH-DPAT, the arterial vasoconstrictor arginine vasopressin (AVP), or saline. To further determine whether protection of acid-base balance was dependent on splenic contraction and blood mobilization, central venous pressure (CVP), MCFP, and blood gases were determined during hemorrhage and subsequent 8-OH-DPAT-administration in rats subjected to real or sham splenectomy. Subjects were hemorrhaged to an arterial pressure of 50 mmHg for 25 min and subsequently were treated with 8-OH-DPAT (30 nmol/kg iv), AVP titrated to match the pressor effect of 8-OH-DPAT (∼2 ng/min iv), or infusion of normal saline. 8-OH-DPAT increased MAP, CVP, MCFP, and SA, and decreased lactate accumulation. AVP did not affect CVP or SA, but raised MCFP slightly to a level intermediate between 8-OH-DPAT- and saline-treated rats. Infusion of AVP also produced a modest protection against metabolic acidosis. Splenectomy prevented the rise in CVP, MCFP, and protection against metabolic acidosis produced by 8-OH-DPAT but had no effect on the immediate pressor response to the drug. Together, the data indicate that 8-OH-DPAT produces a pattern of cardiovascular responses consistent with a sympathetic-mediated venoconstriction that is, in part, responsible for the drug's beneficial effect on acid-base balance. Moreover, blood mobilization stimulated by the spleen is required for the beneficial effects of 8-OH-DPAT.


1987 ◽  
Vol 151 (2) ◽  
pp. 145-154
Author(s):  
KENJI TAKI ◽  
NOBUAKI TAKAHASHI ◽  
KEISHI MIZUNO ◽  
REIJI WAKUSAWA

Sign in / Sign up

Export Citation Format

Share Document