Sodium depletion activates the aldosterone-sensitive neurons in the NTS independently of thirst

2007 ◽  
Vol 292 (3) ◽  
pp. R1338-R1348 ◽  
Author(s):  
Joel C. Geerling ◽  
Arthur D. Loewy

Thirst and sodium appetite are both critical for restoring blood volume. Because these two behavioral drives can arise under similar physiological conditions, some of the brain sensory sites that stimulate thirst may also drive sodium appetite. However, the physiological and temporal dynamics of these two appetites exhibit clear differences, suggesting that they involve separate brain circuits. Unlike thirst-associated sensory neurons in the hypothalamus, the 11-β-hydroxysteroid dehydrogenase type 2 (HSD2) neurons in the rat nucleus tractus solitarius (NTS) are activated in close association with sodium appetite ( 16 ). Here, we tested whether the HSD2 neurons are also activated in response to either of the two physiological stimuli for thirst: hyperosmolarity and hypovolemia. Hyperosmolarity, produced by intraperitoneal injection of hypertonic saline, stimulated a large increase in water intake and a substantial increase in immunoreactivity for the neuronal activity marker c-Fos within the medial NTS, but not in the HSD2 neurons. Hypovolemia, produced by subcutaneous injection of hyperoncotic polyethylene glycol (PEG), stimulated an increase in water intake within 1–4 h without elevating c-Fos expression in the HSD2 neurons. The HSD2 neurons were, however, activated by prolonged hypovolemia, which also stimulated sodium appetite. Twelve hours after PEG was injected in rats that had been sodium deprived for 4 days, the HSD2 neurons showed a consistent increase in c-Fos immunoreactivity. In summary, the HSD2 neurons are activated specifically in association with sodium appetite and appear not to function in thirst.

1998 ◽  
Vol 275 (5) ◽  
pp. R1639-R1646 ◽  
Author(s):  
J. R. Blair-West ◽  
K. D. Carey ◽  
D. A. Denton ◽  
R. S. Weisinger ◽  
R. E. Shade

The roles of ANG II in the brain mechanisms subserving thirst and Na appetite in baboons were investigated by chronic intracerebroventricular infusions of ANG II and AT1-receptor antagonists using subcutaneous miniosmotic pumps and by oral administration of captopril. ANG II at 3 or 5 μg/h for 7 days increased water intake from 2,455 ± 107 to 7,052 ± 562 ml/day by day 6 and 300 mM NaCl intake from 8.3 ± 1.1 to 275 ± 87 mmol/day by day 5. Concurrent intracerebroventricular losartan (300 μg/h) did not substantially reduce these responses, but they were abolished by intracerebroventricular ZD-7155 (50 μg/h). The increase of 300 mM NaCl intake when it was offered after intramuscular injection of furosemide, 2 mg ⋅ kg−1 ⋅ day−1for 3 days, was unaltered by intracerebroventricular losartan (300 μg/h) but was reduced by intracerebroventricular ZD-7155 (50 μg/h) infused throughout Na depletion/repletion; oral captopril (1 g, 3 and 18 h before access to 300 mM NaCl) also reduced NaCl intake. Restriction of water intake to 25% of daily intake for 3 days caused a high intake of water on day 4, and this was reduced by intracerebroventricular losartan (300 μg/h) infused throughout the period of water restriction/rehydration. These novel results in a primate species suggest that brain ANG II is involved in both thirst and Na appetite, acting via AT1 receptors.


2022 ◽  
Vol 15 ◽  
Author(s):  
Hao Lei ◽  
Rong Hu ◽  
Guanghua Luo ◽  
Tingqian Yang ◽  
Hui Shen ◽  
...  

Type 2 diabetes mellitus (T2DM) is associated with cognitive impairment in many domains. There are several pieces of evidence that changes in neuronal neuropathies and metabolism have been observed in T2DM. Structural and functional MRI shows that abnormal connections and synchronization occur in T2DM brain circuits and related networks. Neuroplasticity and energy metabolism appear to be principal effector systems, which may be related to amyloid beta (Aβ) deposition, although there is no unified explanation that includes the complex etiology of T2DM with cognitive impairment. Herein, we assume that cognitive impairment in diabetes may lead to abnormalities in neuroplasticity and energy metabolism in the brain, and those reflected to MRI structural connectivity and functional connectivity, respectively.


2020 ◽  
Vol 245 (2) ◽  
pp. 231-246 ◽  
Author(s):  
Daniel J Tobiansky ◽  
George V Kachkovski ◽  
Reilly T Enos ◽  
Kim L Schmidt ◽  
E Angela Murphy ◽  
...  

Sucrose consumption is associated with type 2 diabetes, cardiovascular disease, and cognitive deficits. Sucrose intake during pregnancy might have particularly prominent effects on metabolic, endocrine, and neural physiology. It remains unclear how consumption of sucrose affects parous females, especially in brain circuits that mediate food consumption and reward processing. Here, we examine whether a human-relevant level of sucrose before, during, and after pregnancy (17–18 weeks total) influences metabolic and neuroendocrine physiology in female rats. Females were fed either a control diet or a macronutrient-matched, isocaloric sucrose diet (25% of kcal from sucrose). Metabolically, sucrose impairs glucose tolerance, increases liver lipids, and increases a marker of adipose inflammation, but has no effect on body weight or overall visceral adiposity. Sucrose also decreases corticosterone levels in serum but not in the brain. Sucrose increases progesterone levels in serum and in the brain and increases the brain:serum ratio of progesterone in the mesocorticolimbic system and hypothalamus. These data suggest a dysregulation of systemic and local steroid signalling. Moreover, sucrose decreases tyrosine hydroxylase (TH), a catecholamine-synthetic enzyme, in the medial prefrontal cortex. Finally, sucrose consumption alters the expression pattern of FOSB, a marker of phasic dopamine signalling, in the nucleus accumbens. Overall, chronic consumption of sucrose at a human-relevant level alters metabolism, steroid levels, and brain dopamine signalling in a female rat model.


1988 ◽  
Vol 255 (2) ◽  
pp. R205-R211 ◽  
Author(s):  
J. R. Blair-West ◽  
D. A. Denton ◽  
M. J. McKinley ◽  
R. S. Weisinger

Cows depleted of Na by loss of saliva from a parotid fistula for 46 h had an avid appetite for Na solution. They drank 21.0 +/- 1.6 liter of 0.3 M NaHCO3-NaCl solution during 2 h of access but little or no water during that time. Solutions of angiotensin II or captopril were infused for 3 h intravenously or into a lateral ventricle (intracerebroventricular) beginning 1 h before access to Na solution. Intravenous angiotensin II increased Na intake (to 26.8 +/- 2.9 liter, P less than 0.01) but did not alter water intake. Intracerebroventricular angiotensin II increased water intake but did not alter Na intake. Intravenous captopril reduced Na intake (to 11.0 +/- 2.1 liter, P less than 0.001) and concurrent intravenous angiotensin II prevented the reduction but concurrent intracerebroventricular angiotensin II did not. Intracerebroventricular captopril did not alter Na or water intake. Intravenous captopril reduced to zero the water intake during the hour before Na access, and concurrent intravenous angiotensin II prevented that reduction also. The dipsogenic action of intracerebroventricular angiotensin II was potentiated by intravenous captopril. The results of these experiments suggest that if angiotensin II receptors involved in the mechanism regulating Na appetite are in the brain, they are accessible only from the blood, e.g., in circumventricular organs. Thirst was inhibited by reduction of angiotensin II in blood but was stimulated only by angiotensin II acting inside the blood-brain barrier.


2019 ◽  
Vol 121 (5) ◽  
pp. 1588-1590 ◽  
Author(s):  
Luca Casartelli

Neural, oscillatory, and computational counterparts of multisensory processing remain a crucial challenge for neuroscientists. Converging evidence underlines a certain efficiency in balancing stability and flexibility of sensory sampling, supporting the general idea that multiple parallel and hierarchically organized processing stages in the brain contribute to our understanding of the (sensory/perceptual) world. Intriguingly, how temporal dynamics impact and modulate multisensory processes in our brain can be investigated benefiting from studies on perceptual illusions.


2021 ◽  
Vol 22 (3) ◽  
pp. 1059
Author(s):  
Bodo C. Melnik

Epidemiological studies associate milk consumption with an increased risk of Parkinson’s disease (PD) and type 2 diabetes mellitus (T2D). PD is an α-synucleinopathy associated with mitochondrial dysfunction, oxidative stress, deficient lysosomal clearance of α-synuclein (α-syn) and aggregation of misfolded α-syn. In T2D, α-syn promotes co-aggregation with islet amyloid polypeptide in pancreatic β-cells. Prion-like vagal nerve-mediated propagation of exosomal α-syn from the gut to the brain and pancreatic islets apparently link both pathologies. Exosomes are critical transmitters of α-syn from cell to cell especially under conditions of compromised autophagy. This review provides translational evidence that milk exosomes (MEX) disturb α-syn homeostasis. MEX are taken up by intestinal epithelial cells and accumulate in the brain after oral administration to mice. The potential uptake of MEX miRNA-148a and miRNA-21 by enteroendocrine cells in the gut, dopaminergic neurons in substantia nigra and pancreatic β-cells may enhance miRNA-148a/DNMT1-dependent overexpression of α-syn and impair miRNA-148a/PPARGC1A- and miRNA-21/LAMP2A-dependent autophagy driving both diseases. MiRNA-148a- and galactose-induced mitochondrial oxidative stress activate c-Abl-mediated aggregation of α-syn which is exported by exosome release. Via the vagal nerve and/or systemic exosomes, toxic α-syn may spread to dopaminergic neurons and pancreatic β-cells linking the pathogenesis of PD and T2D.


2021 ◽  
Vol 22 (15) ◽  
pp. 8051
Author(s):  
Rodrigo Teodoro ◽  
Daniel Gündel ◽  
Winnie Deuther-Conrad ◽  
Lea Ueberham ◽  
Magali Toussaint ◽  
...  

Cannabinoid receptors type 2 (CB2R) represent an attractive therapeutic target for neurodegenerative diseases and cancer. Aiming at the development of a positron emission tomography (PET) radiotracer to monitor receptor density and/or occupancy during a CB2R-tailored therapy, we herein describe the radiosynthesis of cis-[18F]1-(4-fluorobutyl-N-((1s,4s)-4-methylcyclohexyl)-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide ([18F]LU14) starting from the corresponding mesylate precursor. The first biological evaluation revealed that [18F]LU14 is a highly affine CB2R radioligand with >80% intact tracer in the brain at 30 min p.i. Its further evaluation by PET in a well-established rat model of CB2R overexpression demonstrated its ability to selectively image the CB2R in the brain and its potential as a tracer to further investigate disease-related changes in CB2R expression.


Author(s):  
Nasim Janbozorgi ◽  
Ramesh Allipour ◽  
Kurosh Djafarian ◽  
Sakineh Shab-Bidar ◽  
Mostafa Badeli ◽  
...  

2018 ◽  
Vol 39 (5) ◽  
pp. 719-738 ◽  
Author(s):  
Megan E Capozzi ◽  
Richard D DiMarchi ◽  
Matthias H Tschöp ◽  
Brian Finan ◽  
Jonathan E Campbell

Abstract Glucagonlike peptide 1 (GLP-1) receptor agonists have been efficacious for the treatment of type 2 diabetes due to their ability to reduce weight and attenuate hyperglycemia. However, the activity of glucagonlike peptide 1 receptor–directed strategies is submaximal, and the only potent, sustainable treatment of metabolic dysfunction is bariatric surgery, necessitating the development of unique therapeutics. GLP-1 is structurally related to glucagon and glucose-dependent insulinotropic peptide (GIP), allowing for the development of intermixed, unimolecular peptides with activity at each of their respective receptors. In this review, we discuss the range of tissue targets and added benefits afforded by the inclusion of each of GIP and glucagon. We discuss considerations for the development of sequence-intermixed dual agonists and triagonists, highlighting the importance of evaluating balanced signaling at the targeted receptors. Several multireceptor agonist peptides have been developed and evaluated, and the key preclinical and clinical findings are reviewed in detail. The biological activity of these multireceptor agonists are founded in the success of GLP-1-directed strategies; by including GIP and glucagon components, these multireceptor agonists are thought to enhance GLP-1’s activities by broadening the tissue targets and synergizing at tissues that express multiple receptors, such at the brain and pancreatic isletβ cells. The development and utility of balanced, unimolecular multireceptor agonists provide both a useful tool for querying the actions of incretins and glucagon during metabolic disease and a unique drug class to treat type 2 diabetes with unprecedented efficacy.


2015 ◽  
Vol 370 (1668) ◽  
pp. 20140170 ◽  
Author(s):  
Riitta Hari ◽  
Lauri Parkkonen

We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function.


Sign in / Sign up

Export Citation Format

Share Document