Adipogenic potential of multiple human adenoviruses in vivo and in vitro in animals

2006 ◽  
Vol 290 (1) ◽  
pp. R190-R194 ◽  
Author(s):  
Leah D. Whigham ◽  
Barbara A. Israel ◽  
Richard L. Atkinson

Human adenovirus-36 (Ad-36) increases adiposity in chickens, mice, and nonhuman primates and is associated with human obesity. Ad-36 paradoxically reduces serum cholesterol and triglycerides in animal models. Ad-36 increases adipocyte differentiation and triglyceride accumulation in 3T3-L1 cells in vitro. This study evaluated whether three other human adenoviruses increase adiposity in chickens and in 3T3-L1 cells in vitro. We inoculated chickens with human Ad-2, Ad-31, Ad-37, or media at age 3 wk. Food intake and weights were recorded for 3.5 wk, and then chickens were killed and visceral fat, body composition, serum lipids, and viral antibody status were determined. Visceral fat and total body fat were significantly elevated ( P < 0.001) in the Ad-37 group compared with all other groups. Final body weights were higher in chickens inoculated with Ad-37 compared with Ad-2, but not significantly higher than in control or Ad-31 groups. Food intake did not differ among groups. Serum cholesterol was elevated in Ad-37 chickens compared with control ( P < 0.01) but was not affected by other viruses. Triglycerides were reduced in Ad-37 chickens ( P < 0.0001) but were not affected by other viruses. In 3T3-L1 cells in vitro, Ad-31, Ad-36, and Ad-37, but not Ad-2, increased adipocyte differentiation and triglycerides accumulation. In summary, Ad-37 is another human adenovirus that increases adiposity and reduces serum triglycerides in an animal model. However, the response of serum cholesterol is opposite that of Ad-36. Evaluation of other human adenoviruses to determine their effects on adiposity and serum lipids is warranted, but in vitro assays may not be definitive for this purpose.

2021 ◽  
Vol 83 (2) ◽  
pp. 73-81
Author(s):  
O.Yu. Povnitsa ◽  
◽  
L.O. Biliavska ◽  
Yu.B. Pankivska ◽  
S.D. Zagorodnya ◽  
...  

Currently, 90 different types of human adenoviruses (HAdV) are known, which have been classified into seven species from A to G and new adenovirus types continue to emerge. Antigenic diversity of viruses inhibits the process of creating universal vaccines and causes the development of resistance to direct-acting antiviral drugs. In addition to the rapid development of drug resistance, too narrow a range of existing drugs and a significant number of side effects limits the treatment of adenoviral infections. There is currently no specific etiotropic antiviral drug. Therefore, the development of new effective drugs and the selection of the optimal drug for the treatment of infections caused by adenoviruses remain relevant. The aim of the study was to investigate the antiviral properties of the drugs Nazoferon spray and Nazoferon drops in a model of human adenovirus serotype 3. Methods. Determination of cytotoxicity and antiviral action of drugs was performed by standard colorimetric method using MTT. The titer of the virus, synthesized in the presence of drugs was determined by the end point of dilution of the virus, which causes 50% development of the cytopathic effect of the virus on cells (СPE). Results. Low cytotoxicity of Nazoferon spray and Nazoferon drops (manufactured by JSC Farmak, Ukraine) was shown, CC50 is 53854 IU/ml and 54357 IU/ml, respectively. Quantitative and qualitative composition of excipients had no cytotoxic effect. In prophylactic regimens, interferon preparations did not inhibit the reproduction of adenovirus in vitro. Taking into account that most of the virions remain associated with the cells during the reproduction of adenovirus in the cell, we used test to determine infectivity lysates of infected and treated cells. The infectious titer of the synthesized HAdV3 was reduced by 3.2 log10 and 3.7 log10 for Nazoferon spray and drops, respectively. Conclusions. Nazoferon spray and drops can be recommended as anti-adenoviral drugs that block the reproduction of adenovirus, and due to their bioavailability and low cost have significant advantages in the treatment of acute respiratory infections (ARIs) caused by human adenoviruses.


2006 ◽  
Vol 91 (11) ◽  
pp. 4520-4527 ◽  
Author(s):  
Yin Xiao ◽  
Han Junfeng ◽  
Luo Tianhong ◽  
Wang Lu ◽  
Chen Shulin ◽  
...  

Abstract Context: The alteration of protein expression in white adipose tissue (WAT) may contribute to the pathogenesis of obesity. Objective: The aim of the present study was to uncover proteins differentially expressed in the WAT of overweight/obese subjects and study the role of the identified proteins in adipocyte differentiation. Design and Setting: Two-dimensional electrophoresis and matrix-assisted laser desorption ionization-time of flight-mass spectrometry were used to identify proteins differentially expressed in WAT between obese/overweight and control groups. Cathepsin K (CTSK), one of the proteins identified by the above methods, was highlighted to assess its effects on adipocyte differentiation through 3T3-L1 cell line. Results: Human visceral adipose tissue of overweight/obese subjects displayed a differential protein expression profile, compared with that of normal-weight controls. CTSK was up-regulated in the WAT of overweight/obese subjects, and it had a significant positive correlation with body mass index. In vitro study showed that CTSK expression and its enzyme activity gradually increased in the process of adipocyte differentiation. Moreover, E-64, an inhibitor of CTSK, could prevent adipocyte differentiation in a dose-dependent manner, which was characterized by the absence of triglyceride accumulation and glycerol contents. Conclusions: CTSK, a cysteine protease involved in extracellular matrix remodeling, could be one of the determinants of adipocyte differentiation. CTSK may be involved in the pathogenesis of obesity by promoting adipocyte differentiation.


1979 ◽  
Vol 41 (03) ◽  
pp. 576-582
Author(s):  
A R Pomeroy

SummaryThe limitations of currently used in vitro assays of heparin have demonstrated the need for an in vivo method suitable for routine use.The in vivo method which is described in this paper uses, for each heparin preparation, four groups of five mice which are injected intravenously with heparin according to a “2 and 2 dose assay” procedure. The method is relatively rapid, requiring 3 to 4 hours to test five heparin preparations against a standard preparation of heparin. Levels of accuracy and precision acceptable for the requirements of the British Pharmacopoeia are obtained by combining the results of 3 to 4 assays of a heparin preparation.The similarity of results obtained the in vivo method and the in vitro method of the British Pharmacopoeia for heparin preparations of lung and mucosal origin validates this in vivo method and, conversely, demonstrates that the in vitro method of the British Pharmacopoeia gives a reliable estimation of the in vivo activity of heparin.


1975 ◽  
Vol 33 (03) ◽  
pp. 617-631 ◽  
Author(s):  
H. S Kingdon ◽  
R. L Lundblad ◽  
J. J Veltkamp ◽  
D. L Aronson

SummaryFactor IX concentrates manufactured from human plasma and intended for therapeutic infusion in man have been suspected for some time of being potentially thrombogenic. In the current studies, assays were carried out in vitro and in vivo for potentially thrombogenic materials. It was possible to rank the various materials tested according to the amount of thrombogenic material detected. For concentrates not containing heparin, there was substantial agreement between the in vivo and in vitro assays, with a coefficient of correlation of 0.77. There was no correlation between the assays for thrombogenicity and the antithrombin III content. We conclude that many presently available concentrates of Factor IX contain substantial amounts of potentially thrombogenic enzymes, and that this fact must be considered in arriving at the decision whether or not to use them therapeutically.


2018 ◽  
Vol 21 (3) ◽  
pp. 215-221
Author(s):  
Haroon Khan ◽  
Muhammad Zafar ◽  
Helena Den-Haan ◽  
Horacio Perez-Sanchez ◽  
Mohammad Amjad Kamal

Aim and Objective: Lipoxygenase (LOX) enzymes play an important role in the pathophysiology of several inflammatory and allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic obstructive pulmonary disease. Inhibitors of the LOX are believed to be an ideal approach in the treatment of diseases caused by its over-expression. In this regard, several synthetic and natural agents are under investigation worldwide. Alkaloids are the most thoroughly investigated class of natural compounds with outstanding past in clinically useful drugs. In this article, we have discussed various alkaloids of plant origin that have already shown lipoxygenase inhibition in-vitro with possible correlation in in silico studies. Materials and Methods: Molecular docking studies were performed using MOE (Molecular Operating Environment) software. Among the ten reported LOX alkaloids inhibitors, derived from plant, compounds 4, 2, 3 and 1 showed excellent docking scores and receptor sensitivity. Result and Conclusion: These compounds already exhibited in vitro lipoxygenase inhibition and the MOE results strongly correlated with the experimental results. On the basis of these in vitro assays and computer aided results, we suggest that these compounds need further detail in vivo studies and clinical trial for the discovery of new more effective and safe lipoxygenase inhibitors. In conclusion, these results might be useful in the design of new and potential lipoxygenase (LOX) inhibitors.


Author(s):  
Nidhi Sharma ◽  
Arti Singh ◽  
Ruchika Sharma ◽  
Anoop Kumar

Aim: The aim of the study was to find out the role of auranofin as a promising broad spectrum antibacterial agent. Methods: In-vitro assays (Percentage growth retardation, Bacterial growth kinetics, Biofilm formation assay) and In-silico study (Molegro virtual docker (MVD) version 6.0 and Molecular operating environment (MOE) version 2008.10 software). Results: The in vitro assays have shown that auranofin has good antibacterial activity against Gram positive and Gram negative bacterial strains. Further, auranofin has shown synergistic activity in combination with ampicillin against S. aureus and B. subtilis whereas in combination with neomycin has just shown additive effect against E. coli, P. aeruginosa and B. pumilus. In vivo results have revealed that auranofin alone and in combination with standard drugs significantly decreased the bioburden in zebrafish infection model as compared to control. The molecular docking study have shown good interaction of auranofin with penicillin binding protein (2Y2M), topoisomerase (3TTZ), UDP-3-O-[3- hydroxymyristoyl] N-acetylglucosaminedeacetylase (3UHM), cell adhesion protein (4QRK), β-lactamase (5CTN) and arylsulphatase (1HDH) enzyme as that of reference ligand which indicate multimodal mechanism of action of auranofin. Finally, MTT assay has shown non-cytotoxic effect of auranofin. Conclusion: In conclusion, auranofin in combination with existing antibiotics could be developed as a broad spectrum antibacterial agent; however, further studies are required to confirm its safety and efficacy. This study provides possibility of use of auranofin apart from its established therapeutic indication in combination with existing antibiotics to tackle the problem of resistance.


2019 ◽  
Vol 16 (2) ◽  
pp. 116-127 ◽  
Author(s):  
Ashwani Kumar ◽  
Vineet Mehta ◽  
Utkarsh Raj ◽  
Pritish Kumar Varadwaj ◽  
Malairaman Udayabanu ◽  
...  

Background: Cholinesterase inhibitors are the first line of therapy for the management of Alzheimer’s disease (AD), however, it is now established that they provide only temporary and symptomatic relief, besides, having several inherited side-effects. Therefore, an alternative drug discovery method is used to identify new and safer ‘disease-modifying drugs’. Methods: Herein, we screened 646 small molecules of natural origin having reported pharmacological and functional values through in-silico docking studies to predict safer neuromodulatory molecules with potential to modulate acetylcholine metabolism. Further, the potential of the predicted molecules to inhibit acetylcholinesterase (AChE) activity and their ability to protect neurons from degeneration was determined through in-vitro assays. Results: Based on in-silico AChE interaction studies, we predicted quercetin, caffeine, ascorbic acid and gallic acid to be potential AChE inhibitors. We confirmed the AChE inhibitory potential of these molecules through in-vitro AChE inhibition assay and compared results with donepezil and begacestat. Herbal molecules significantly inhibited enzyme activity and inhibition for quercetin and caffeine did not show any significant difference from donepezil. Further, the tested molecules did not show any neurotoxicity against primary (E18) hippocampal neurons. We observed that quercetin and caffeine significantly improved neuronal survival and efficiently protected hippocampal neurons from HgCl2 induced neurodegeneration, which other molecules, including donepezil and begacestat, failed to do. Conclusion: Quercetin and caffeine have the potential as “disease-modifying drugs” and may find application in the management of neurological disorders such as AD.


2020 ◽  
Vol 16 ◽  
Author(s):  
Haicheng Liu ◽  
Yushi Futamura ◽  
Honghai Wu ◽  
Aki Ishiyama ◽  
Taotao Zhang ◽  
...  

Background: Malaria is one of the most devastating parasitic diseases, yet the discovery of antimalarial agents remains profoundly challenging. Very few new antimalarials have been developed in the past 50 years, while the emergence of drug-resistance continues to appear. Objective: This study focuses on the discovery, design, synthesis, and antimalarial evaluation of 3-cinnamamido-N-substituted benzamides. Method: In this study, a screening of our compound library was carried out against the multidrug-sensitive Plasmodium falciparum 3D7 strain. Derivatives of the hit were designed, synthesized and tested against P. falciparum 3D7 and the in vivo antimalarial activity of the most active compounds was evaluated using the method of Peters’ 4-day suppressive test. Results: The retrieved hit compound 1 containing a 3-cinnamamido-N-substituted benzamide skeleton showed moderate antimalarial activity (IC50 = 1.20 µM) for the first time. A series of derivatives were then synthesized through a simple four-step workflow, and half of them exhibited slightly better antimalarial effect than the precursor 1 during the subsequent in vitro assays. Additionally, compounds 11, 23, 30 and 31 displayed potent activity with IC50 values of approximately 0.1 µM, and weak cytotoxicity against mammalian cells. However, in vivo antimalarial activity is not effective which might be ascribed to the poor solubility of these compounds. Conclusion: In this study, phenotypic screen of our compound library resulted in the first report of 3-cinnamamide framework with antimalarial activity and 40 derivatives were then designed and synthesized. Subsequent structure-activity studies showed that compounds 11, 23, 30 and 31 exhibited the most potent and selective activity against P. falciparum 3D7 strain with IC50 values around 0.1 µM. Our work herein sets another example of phenotypic screen-based drug discovery, leading to potentially promising candidates of novel antimalarial agents once given further optimization.


2020 ◽  
Vol 16 ◽  
Author(s):  
Benedetta Bocchini ◽  
Bruna Goldani ◽  
Fernanda S.S. Sousa ◽  
Paloma T. Birmann ◽  
Cesar A. Brüning ◽  
...  

Background: Quinoline derivatives have been attracted much attention in drug discovery and synthetic derivatives of these scaffolds present a range of pharmacological activities. Therefore, organoselenium compounds are valuable scaffolds in organic synthesis because their pharmacological activities and their use as versatile building blocks for regio-, chemio-and stereoselective reactions. Thus, the synthesis of selenium-containing quinolines has great significance, and their applicability range from simple antioxidant agents, to selective DNA-binding and photocleaving agents. Objective: In the present study we describe the synthesis and antioxidant activity in vitro of new 7-chloroN(arylselanyl)quinolin-4-amines 5 by the reaction of 4,7-dichloroquinoline 4 with (arylselanyl)-amines 3. Methods: For the synthesis of 7-chloro-N(arylselanyl)quinolin-4-amines 5, we performed the reaction of (arylselanyl)- amines 3 with 4,7-dichloroquinoline 4 in the presence of Et3N at 120 °C in a sealed tube. The antioxidant activities of the compounds 5 were evaluated by the following in vitro assays: 2,2- diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric ion reducing antioxidant power (FRAP), nitric oxide (NO) scavenging and superoxide dismutase-like activity (SOD-Like). Results: 7-Chloro-N(arylselanyl)quinolin-4-amines 5a-d has been synthesized in yields ranging from 68% to 82% by the reaction of 4,7-dichloroquinoline 4 with arylselanyl-amines 3a-d using Et3N as base, at 120 °C, in a sealed tube for 24 hours and tolerates different substituents, such as -OMe and -Cl, in the arylselanyl moiety. The obtained compounds 5a-d presented significant results with respect to the antioxidant potential, which had effect in the tests of inhibition of radical’s DPPH, ABTS+ and NO, as well as in the test that evaluates the capacity (FRAP) and in the superoxide dismutase-like activity assay (SOD-Like). It is worth mentioning that 7-chloro-N(arylselanyl)quinolin-4-amine 5b presented excellent results, demonstrating a better antioxidant capacity when compared to the others. Conclusion: According to the obtained results 7-chloro-N(arylselanyl)quinolin-4-amines 5 were synthesized in good yields by the reaction of 4,7-dichloroquinoline with arylselanyl-amines and tolerates different substituents in the arylselanyl moiety. The tested compounds presented significant antioxidant potential in the tests of inhibition of DPPH, ABTS+ and NO radicals, as well as in the FRAP and superoxide dismutase-like activity assays (SOD-Like).


Sign in / Sign up

Export Citation Format

Share Document