Nitric oxide modulates spontaneous swallowing behavior in near-term ovine fetus

1999 ◽  
Vol 277 (4) ◽  
pp. R981-R986 ◽  
Author(s):  
Mostafa A. El-Haddad ◽  
Conrad R. Chao ◽  
Sheng-Xing Ma ◽  
Michael G. Ross

Human and ovine fetuses demonstrate an enhanced rate of swallowing, an activity critical for amniotic fluid regulation. Fetal swallowing may be modulated by both systemic and central factors. Nitric oxide (NO) is a central neuromodulator that has been localized to brain regions regulating thirst and swallowing. We sought to determine if NO contributes to the regulation of spontaneous ovine fetal swallowing. Six time-dated pregnant ewes with singleton fetuses (129 ± 1 day) were chronically prepared with fetal vascular and lateral ventricle catheters and electrocorticogram (ECoG) and esophageal electromyogram electrodes. After a 2-h control period, fetuses were given lateral ventricle injection of NO synthase inhibitor nitro-l-arginine methyl ester (l-NAME) and monitored for 2 h. NO precursor l-arginine was then injected into the lateral ventricle, and fetuses were monitored for a final 2 h. All fetuses received an additional control study of fetal swallowing before and after lateral ventricle injection of artificial cerebrospinal fluid (aCSF). Data were analyzed with repeated-measures ANOVA and paired t-test ( P < 0.05). Suppression of a central NO with central l-NAME significantly reduced mean (±SE) spontaneous fetal swallowing (1.2 ± 0.1–0.6 ± 0.1 swallows/min low-voltage ECoG; P < 0.01). Restoration of central NO by l-arginine significantly increased fetal swallowing to pre-l-NAME levels (1.2 ± 0.1 swallows/min low voltage). There were no changes in fetal swallowing during the control study of aCSF. Fetal ECoG activity and blood pressure did not change during the study or control aCSF injection. We conclude that NO is an important neuromodulator of fetal swallowing activity. Central NO synthase activity may contribute to the heightened level of spontaneous fetal swallowing and thus amniotic fluid regulation.

1999 ◽  
Vol 86 (4) ◽  
pp. 1185-1190 ◽  
Author(s):  
D. L. Kellogg ◽  
Y. Liu ◽  
I. F. Kosiba ◽  
D. O’Donnell

Local warming of skin induces vasodilation by unknown mechanisms. To test whether nitric oxide (NO) is involved, we examined effects of NO synthase (NOS) inhibition with N G-nitro-l-arginine methyl ester (l-NAME) on vasodilation induced by local warming of skin in six subjects. Two adjacent sites on the forearm were instrumented with intradermal microdialysis probes for delivery ofl-NAME and sodium nitroprusside. Skin blood flow was monitored by laser-Doppler flowmetry (LDF) at microdialysis sites. Local temperature (Tloc) of the skin at both sites was controlled with special LDF probe holders. Mean arterial pressure (MAP; Finapres) was measured and cutaneous vascular conductance calculated (CVC = LDF/MAP = mV/mmHg). Data collection began with a control period (Tloc at both sites = 34°C). One site was then warmed to 41°C while the second was maintained at 34°C. Local warming increased CVC from 1.44 ± 0.41 to 4.28 ± 0.60 mV/mmHg ( P < 0.05). Subsequent l-NAME administration reduced CVC to 2.28 ± 0.47 mV/mmHg ( P < 0.05 vs. heating), despite the continued elevation of Tloc. At a Tloc of 34°C,l-NAME reduced CVC from 1.17 ± 0.23 to 0.75 ± 0.11 mV/mmHg ( P < 0.05). Administration of sodium nitroprusside increased CVC to levels no different from those induced by local warming. Thus NOS inhibition attenuated, and sodium nitroprusside restored, the cutaneous vasodilation induced by elevation of Tloc; therefore, the mechanism of cutaneous vasodilation by local warming requires NOS generation of NO.


2012 ◽  
Vol 303 (7) ◽  
pp. R710-R718 ◽  
Author(s):  
David Z. I. Cherney ◽  
Heather N. Reich ◽  
Shan Jiang ◽  
Ronnie Har ◽  
Rania Nasrallah ◽  
...  

Studies of experimental diabetes mellitus (DM) suggest that increased nitric oxide (NO) bioactivity contributes to renal hyperfiltration. However, the role of NO in mediating hyperfiltration has not been fully elucidated in humans. Our aim was to examine the effect of NO synthase inhibition on renal and peripheral vascular function in normotensive subjects with uncomplicated type 1 DM. Renal function and brachial artery flow-mediated vasodilatation (FMD) were measured before and after an intravenous infusion of the NO synthase inhibitor NG-nitro-l-arginine methyl ester (l-NMMA) in 21 healthy control and 37 type 1 DM patients. Measurements in DM participants were made under clamped euglycemic conditions. The effect of l-NMMA on circulating and urinary NO metabolites (NOx) and cGMP and on urinary prostanoids was also determined. Baseline characteristics were similar in the two groups. For analysis, the DM patients were divided into those with hyperfiltration (DM-H, n = 18) and normal glomerular filtration rate (GFR) levels (DM-N, n = 19). Baseline urine NOx and cGMP were highest in DM-H. l-NMMA led to a decline in GFR in DM-H (152 ± 16 to 140 ± 11 ml·min−1·1.73 m−2) but not DM-N or healthy control participants. The decline in effective renal plasma flow in response to l-NMMA (806 ± 112 to 539 ± 80 ml·min−1·1.73 m−2) in DM-H was also exaggerated compared with the other groups (repeated measures ANOVA, P < 0.05), along with declines in urinary NOx metabolites and cGMP. Baseline FMD was lowest in DM-H compared with the other groups and did not change in response to l-NMMA. l-NMMA reduced FMD and plasma markers of NO bioactivity in the healthy control and DM-N groups. In patients with uncomplicated type 1 DM, renal hyperfiltration is associated with increased NO bioactivity in the kidney and reduced NO bioactivity in the systemic circulation, suggesting a paradoxical state of high renal and low systemic vascular NO bioactivity.


2017 ◽  
Vol 312 (6) ◽  
pp. F1035-F1043 ◽  
Author(s):  
Casandra M. Monzon ◽  
Rossana Occhipinti ◽  
Omar P. Pignataro ◽  
Jeffrey L. Garvin

About 50% of the Na+ reabsorbed in thick ascending limbs traverses the paracellular pathway. Nitric oxide (NO) reduces the permselectivity of this pathway via cGMP, but its effects on absolute Na+ ([Formula: see text]) and Cl− ([Formula: see text]) permeabilities are unknown. To address this, we measured the effect of l-arginine (0.5 mmol/l; NO synthase substrate) and cGMP (0.5 mmol/l) on [Formula: see text] and [Formula: see text] calculated from the transepithelial resistance ( Rt) and [Formula: see text]/[Formula: see text] in medullary thick ascending limbs. Rt was 7,722 ± 1,554 ohm·cm in the control period and 6,318 ± 1,757 ohm·cm after l-arginine treatment ( P < 0.05). [Formula: see text]/[Formula: see text] was 2.0 ± 0.2 in the control period and 1.7 ± 0.1 after l-arginine ( P < 0.04). Calculated [Formula: see text] and [Formula: see text] were 3.52 ± 0.2 and 1.81 ± 0.10 × 10−5 cm/s, respectively, in the control period. After l-arginine they were 6.65 ± 0.69 ( P < 0.0001 vs. control) and 3.97 ± 0.44 ( P < 0.0001) × 10−5 cm/s, respectively. NOS inhibition with Nω-nitro-l-arginine methyl ester (5 mmol/l) prevented l-arginine’s effect on Rt. Next we tested the effect of cGMP. Rt in the control period was 7,592 ± 1,470 and 4,796 ± 847 ohm·cm after dibutyryl-cGMP (0.5 mmol/l; db-cGMP) treatment ( P < 0.04). [Formula: see text]/[Formula: see text] was 1.8 ± 0.1 in the control period and 1.6 ± 0.1 after db-cGMP ( P < 0.03). [Formula: see text] and [Formula: see text] were 4.58 ± 0.80 and 2.66 ± 0.57 × 10−5 cm/s, respectively, for the control period and 9.48 ± 1.63 ( P < 0.007) and 6.01 ± 1.05 ( P < 0.005) × 10−5 cm/s, respectively, after db-cGMP. We modeled NO’s effect on luminal Na+ concentration along the thick ascending limb. We found that NO’s effect on the paracellular pathway reduces net Na+ reabsorption and that the magnitude of this effect is similar to that due to NO’s inhibition of transcellular transport.


2019 ◽  
Vol 72 (8) ◽  
pp. 1473-1476
Author(s):  
Nataliya Matolinets ◽  
Helen Sklyarova ◽  
Eugene Sklyarov ◽  
Andrii Netliukh

Introduction: Polytrauma patients have high risk of shock, septic complications and death during few years of follow-up. In recent years a lot of attention is paid to gaseous transmitters, among which are nitrogen oxide (NO) and hydrogen sulfide (H2S). It is known that the rise of NO and its metabolites levels occurs during the acute period of polytrauma. Nitric oxide and hydrogen sulfide are produced in different cell types, among which are lymphocytes. The aim: To investigate the levels of NO, NOS, iNOS, еNOS, H2S in lymphocytes lysate in patients at the moment of hospitalization and 24 hours after trauma. Materials and methods: We investigated the levels of NO, NO-synthase, inducible NO-synthase, endothelial NO-synthase, H2S in lymphocytes lysate in patients at the moment of hospitalization and 24 hours after trauma. Results: The study included 20 patients with polytrauma who were treated in the intensive care unit (ICU) of the Lviv Emergency Hospital. Tissue injury was associated with an increased production of NO, NOS, iNOS, еNOS during the acute period of polytrauma. At the same time, the level of H2S decreased by the end of the first day of traumatic injury. Conclusions: In acute period of polytrauma, significant increasing of iNOS and eNOS occurs with percentage prevalence of iNOS over eNOS on the background of H2S decreasing.


Author(s):  
I. A. Palagina

Succinate containing compounds possess many types of biological activity and are used for the development of drugs with the target and complex action. This paper is devoted to some aspects of the mechanism of succinamides’ action in a dose of 100 mg/kg. We studied the influence of the compound with antidiabetic properties, -phenylethylamide of 2-oxysuccinanyl acid ( -PhEA-OSAA), and its metabolites such as 2-hydroxyphenylsuccinamide (2-HPhSA) and β-phenylethylsuccinamide ( -PhESA) on the marker indicators of energetic metabolism (EM), antioxidant system (AOS) and nitric oxide (NO) metabolism in subacute experiment on rats. Studies have shown that the action of -FEA-OSAKA on metabolic homeostasis is realized through stimulation of EM, reduction of intensity of NO-synthase metabolism and weakening of the AOS. The nature of the action of -FES and 2-GFS, taking into account the indicators of the state of homeostasis, largely coincides with β-FEA-OSAKA. It was found that the key links in the mechanism of toxic action of succinamides are the effect on antioxidant potential, NO metabolism and energy processes.


1994 ◽  
Vol 267 (1) ◽  
pp. F190-F195 ◽  
Author(s):  
H. Tsukahara ◽  
Y. Krivenko ◽  
L. C. Moore ◽  
M. S. Goligorsky

It has been hypothesized that fluctuations of the ionic composition in the interstitium of juxtaglomerular apparatus (JGA) modulate the function of extraglomerular mesangial cells (MC), thereby participating in tubuloglomerular feedback (TGF) signal transmission. We examined the effects of isosmotic reductions in ambient sodium concentration ([Na+]) and [Cl-] on cytosolic calcium concentration ([Ca2+]i) in cultured rat MC. Rapid reduction of [Na+] or [Cl-] in the bath induced a concentration-dependent rise in [Ca2+]i. MC are much more sensitive to decreases in ambient [Cl-] than to [Na+]; a decrease in [Cl-] as small as 14 mM was sufficient to elicit a detectable [Ca2]i response. These observations suggest that MC can be readily stimulated by modest perturbations of extracellular [Cl-]. Next, we examined whether activation of MC by lowered ambient [Cl-] influences cellular nitric oxide (NO) production. Using an amperometric NO sensor, we found that a 13 mM decrease in ambient [Cl-] caused a rapid, Ca2+/calmodulin-dependent rise in NO release from MC. This response was not inhibitable by dexamethasone, indicating the involvement of the constitutive rather than the inducible type of NO synthase in MC. In addition, the NO release was blunted by indomethacin pretreatment, suggesting that a metabolite(s) of cyclooxygenase regulates the activation of NO synthase in MC. Our findings that small perturbations in external [Cl-] stimulate MC to release NO, a highly diffusible and rapidly acting vasodilator, provide a possible mechanism to explain the transmission of the signal for the TGF response within the JGA.


1994 ◽  
Vol 267 (1) ◽  
pp. R84-R88 ◽  
Author(s):  
M. Huang ◽  
M. L. Leblanc ◽  
R. L. Hester

The study tested the hypothesis that the increase in blood pressure and decrease in cardiac output after nitric oxide (NO) synthase inhibition with N omega-nitro-L-arginine methyl ester (L-NAME) was partially mediated by a neurogenic mechanism. Rats were anesthetized with Inactin (thiobutabarbital), and a control blood pressure was measured for 30 min. Cardiac output and tissue flows were measured with radioactive microspheres. All measurements of pressure and flows were made before and after NO synthase inhibition (20 mg/kg L-NAME) in a group of control animals and in a second group of animals in which the autonomic nervous system was blocked by 20 mg/kg hexamethonium. In this group of animals, an intravenous infusion of norepinephrine (20-140 ng/min) was used to maintain normal blood pressure. L-NAME treatment resulted in a significant increase in mean arterial pressure in both groups. L-NAME treatment decreased cardiac output approximately 50% in both the intact and autonomic blocked animals (P < 0.05). Autonomic blockade alone had no effect on tissue flows. L-NAME treatment caused a significant decrease in renal, hepatic artery, stomach, intestinal, and testicular blood flow in both groups. These results demonstrate that the increase in blood pressure and decreases in cardiac output and tissue flows after L-NAME treatment are not dependent on a neurogenic mechanism.


2004 ◽  
Vol 287 (1) ◽  
pp. L60-L68 ◽  
Author(s):  
Louis G. Chicoine ◽  
Michael L. Paffett ◽  
Tamara L. Young ◽  
Leif D. Nelin

Nitric oxide (NO) is produced by NO synthase (NOS) from l-arginine (l-Arg). Alternatively, l-Arg can be metabolized by arginase to produce l-ornithine and urea. Arginase (AR) exists in two isoforms, ARI and ARII. We hypothesized that inhibiting AR with l-valine (l-Val) would increase NO production in bovine pulmonary arterial endothelial cells (bPAEC). bPAEC were grown to confluence in either regular medium (EGM; control) or EGM with lipopolysaccharide and tumor necrosis factor-α (L/T) added. Treatment of bPAEC with L/T resulted in greater ARI protein expression and ARII mRNA expression than in control bPAEC. Addition of l-Val to the medium led to a concentration-dependent decrease in urea production and a concentration-dependent increase in NO production in both control and L/T-treated bPAEC. In a second set of experiments, control and L/T bPAEC were grown in EGM, EGM with 30 mM l-Val, EGM with 10 mM l-Arg, or EGM with both 10 mM l-Arg and 30 mM l-Val. In both control and L/T bPAEC, treatment with l-Val decreased urea production and increased NO production. Treatment with l-Arg increased both urea and NO production. The addition of the combination l-Arg and l-Val decreased urea production compared with the addition of l-Arg alone and increased NO production compared with l-Val alone. These data suggest that competition for intracellular l-Arg by AR may be involved in the regulation of NOS activity in control bPAEC and in response to L/T treatment.


Sign in / Sign up

Export Citation Format

Share Document