scholarly journals Identification of cold-shock protein RBM3 as a possible regulator of skeletal muscle size through expression profiling

2008 ◽  
Vol 295 (4) ◽  
pp. R1263-R1273 ◽  
Author(s):  
Esther E. Dupont-Versteegden ◽  
Radhakrishnan Nagarajan ◽  
Marjorie L. Beggs ◽  
Edward D. Bearden ◽  
Pippa M. Simpson ◽  
...  

Changes in gene expression associated with skeletal muscle atrophy due to aging are distinct from those due to disuse, suggesting that the response of old muscle to inactivity may be altered. The goal of this study was to identify changes in muscle gene expression that may contribute to loss of adaptability of old muscle. Muscle atrophy was induced in young adult (6-mo) and old (32-mo) male Brown Norway/F344 rats by 2 wk of hindlimb suspension (HS), and soleus muscles were analyzed by cDNA microarrays. Overall, similar changes in gene expression with HS were observed in young and old muscles for genes encoding proteins involved in protein folding (heat shock proteins), muscle structure, and contraction, extracellular matrix, and nucleic acid binding. More genes encoding transport and receptor proteins were differentially expressed in the soleus muscle from young rats, while in soleus muscle from old rats more genes that encoded ribosomal proteins were upregulated. The gene encoding the cold-shock protein RNA-binding motif protein-3 (RBM3) was induced most highly with HS in muscle from old rats, verified by real-time RT-PCR, while no difference with age was observed. The cold-inducible RNA-binding protein (Cirp) gene was also overexpressed with HS, whereas cold-shock protein Y-box-binding protein-1 was not. A time course analysis of RBM3 mRNA abundance during HS showed that upregulation occurred after apoptotic nuclei and markers of protein degradation increased. We conclude that a cold-shock response may be part of a compensatory mechanism in muscles undergoing atrophy to preserve remaining muscle mass and that RBM3 may be a therapeutic target to prevent muscle loss.

2009 ◽  
Vol 39 (3) ◽  
pp. 219-226 ◽  
Author(s):  
John J. McCarthy ◽  
Karyn A. Esser ◽  
Charlotte A. Peterson ◽  
Esther E. Dupont-Versteegden

There is a growing recognition that noncoding RNAs (ncRNA) play an important role in the regulation of gene expression. A class of small (19–22 nt) ncRNAs, known as microRNAs (miRs), have received a great deal of attention lately because of their ability to repress gene expression through a unique posttranscriptional 3′-untranslated region (UTR) mechanism. The objectives of the current study were to identify miRs expressed in the rat soleus muscle and determine if their expression was changed in response to hindlimb suspension. Comprehensive profiling revealed 151 miRs were expressed in the soleus muscle and expression of 18 miRs were significantly ( P < 0.01) changed after 2 and/or 7 days of hindlimb suspension. The significant decrease (16%) in expression of muscle-specific miR-499 in response to hindlimb suspension was confirmed by RT-PCR and suggested activation of the recently proposed miR encoded by myosin gene (MyomiR) network during atrophy. Further analysis of soleus muscle subjected to hindlimb suspension for 28 days provided evidence consistent with MyomiR network repression of β-myosin heavy chain gene (β-MHC) expression. The significant downregulation of network components miR-499 and miR-208b by 40 and 60%, respectively, was associated with increased expression of Sox6 (2.2-fold) and Purβ (23%), predicted target genes of miR-499 and known repressors of β-MHC expression. A Sox6 3′-UTR reporter gene confirmed Sox6 is a target gene of miR-499. These results further expand the role of miRs in adult skeletal muscle and are consistent with a model in which the MyomiR network regulates slow myosin expression during muscle atrophy.


2017 ◽  
Vol 26 (10) ◽  
pp. 1821-1838 ◽  
Author(s):  
Tara E. Crawford Parks ◽  
Aymeric Ravel-Chapuis ◽  
Emma Bondy-Chorney ◽  
Jean-Marc Renaud ◽  
Jocelyn Côté ◽  
...  

2011 ◽  
Vol 301 (2) ◽  
pp. C392-C402 ◽  
Author(s):  
Amy L. Ferry ◽  
Peter W. Vanderklish ◽  
Esther E. Dupont-Versteegden

Cold-inducible RNA-binding protein (RBM3) is suggested to be involved in the regulation of skeletal muscle mass. Cell death pathways are implicated in the loss of muscle mass and therefore the role of RBM3 in muscle apoptosis in C2C12 myoblasts was investigated in this study. RBM3 overexpression was induced by either cold shock (32°C exposure for 6 h) or transient transfection with a myc-tagged RBM3 expression vector. Cell death was induced by H2O2 (1,000 μM) or staurosporine (StSp, 5 μM), and it was shown that cold shock and RBM3 transfection were associated with attenuation of morphological changes and an increase in cell viability compared with normal temperature or empty vector, respectively. No changes in proliferation were observed with either cold shock or RBM3 transfection. DNA fragmentation was not increased in response to H2O2, and a cell permeability assay indicated that cell death in response to H2O2 is more similar to necrosis than apoptosis. RBM3 overexpression reduced apoptosis and the collapse of the membrane potential in response to StSp. Moreover, the increase in caspase-3, -8, and -9 activities in response to StSp was returned to control levels with RBM3 overexpression. These results indicate that increased RBM3 expression decreases muscle cell necrosis as well as apoptosis and therefore RBM3 could potentially serve as an intervention for the loss of muscle cell viability during muscle atrophy and muscle diseases.


2015 ◽  
Vol 119 (4) ◽  
pp. 342-351 ◽  
Author(s):  
Sylvie Dupré-Aucouturier ◽  
Josiane Castells ◽  
Damien Freyssenet ◽  
Dominique Desplanches

Skeletal muscle atrophy is commonly associated with immobilization, ageing, and catabolic diseases such as diabetes and cancer cachexia. Epigenetic regulation of gene expression resulting from chromatin remodeling through histone acetylation has been implicated in muscle disuse. The present work was designed to test the hypothesis that treatment with trichostatin A (TSA), a histone deacetylase inhibitor, would partly counteract unloading-induced muscle atrophy. Soleus muscle atrophy (−38%) induced by 14 days of rat hindlimb suspension was reduced to only 25% under TSA treatment. TSA partly prevented the loss of type I and IIa fiber size and reversed the transitions of slow-twitch to fast-twitch fibers in soleus muscle. Unloading or TSA treatment did not affect myostatin gene expression and follistatin protein. Soleus protein carbonyl content remained unchanged, whereas the decrease in glutathione vs. glutathione disulfide ratio and the increase in catalase activity (biomarkers of oxidative stress) observed after unloading were abolished by TSA treatment. The autophagy-lysosome pathway (Bnip3 and microtubule-associated protein 1 light chain 3 proteins, Atg5, Gabarapl1, Ulk1, and cathepsin B and L mRNA) was not activated by unloading or TSA treatment. However, TSA suppressed the rise in muscle-specific RING finger protein 1 (MuRF1) caused by unloading without affecting the forkhead box (Foxo3) transcription factor. Prevention of muscle atrophy by TSA might be due to the regulation of the skeletal muscle atrophy-related MuRF1 gene. Our findings suggest that TSA may provide a novel avenue to treat unloaded-induced muscle atrophy.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 552
Author(s):  
Jasmine Harley ◽  
Benjamin E. Clarke ◽  
Rickie Patani

RNA binding proteins fulfil a wide number of roles in gene expression. Multiple mechanisms of RNA binding protein dysregulation have been implicated in the pathomechanisms of several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Oxidative stress and mitochondrial dysfunction also play important roles in these diseases. In this review, we highlight the mechanistic interplay between RNA binding protein dysregulation, oxidative stress and mitochondrial dysfunction in ALS. We also discuss different potential therapeutic strategies targeting these pathways.


Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 361
Author(s):  
Myeongwoo Jung ◽  
Eun-Kyung Lee

HuD (also known as ELAVL4) is an RNA–binding protein belonging to the human antigen (Hu) family that regulates stability, translation, splicing, and adenylation of target mRNAs. Unlike ubiquitously distributed HuR, HuD is only expressed in certain types of tissues, mainly in neuronal systems. Numerous studies have shown that HuD plays essential roles in neuronal development, differentiation, neurogenesis, dendritic maturation, neural plasticity, and synaptic transmission by regulating the metabolism of target mRNAs. However, growing evidence suggests that HuD also functions as a pivotal regulator of gene expression in non–neuronal systems and its malfunction is implicated in disease pathogenesis. Comprehensive knowledge of HuD expression, abundance, molecular targets, and regulatory mechanisms will broaden our understanding of its role as a versatile regulator of gene expression, thus enabling novel treatments for diseases with aberrant HuD expression. This review focuses on recent advances investigating the emerging role of HuD, its molecular mechanisms of target gene regulation, and its disease relevance in both neuronal and non–neuronal systems.


2018 ◽  
Vol 154 (6) ◽  
pp. S-585
Author(s):  
Sarah F. Andres ◽  
Kathy N. Williams ◽  
Kathryn E. Hamilton ◽  
Rei Mizuno ◽  
Jeff Headd ◽  
...  

Author(s):  
Charannya Sozheesvari Subhramanyam ◽  
Qiong Cao ◽  
Cheng Wang ◽  
Zealyn Shi-Lin Heng ◽  
Zhihong Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document