scholarly journals Impaired mitochondria-dependent vasodilation in cerebral arteries of Zucker obese rats with insulin resistance

2009 ◽  
Vol 296 (2) ◽  
pp. R289-R298 ◽  
Author(s):  
Prasad V. G. Katakam ◽  
Ferenc Domoki ◽  
James A. Snipes ◽  
Anna R. Busija ◽  
Yagna P. R. Jarajapu ◽  
...  

Mitochondria affect cerebrovascular tone by activation of mitochondrial ATP-sensitive K+ (KATP) channels and generation of reactive oxygen species (ROS). Insulin resistance accompanying obesity causes mitochondrial dysfunction, but the consequences on the cerebral circulation have not been fully identified. We evaluated the mitochondrial effects of diazoxide, a putative mitochondrial KATP channel activator, on cerebral arteries of Zucker obese (ZO) rats with insulin resistance and lean (ZL) controls. Diameter measurements showed diminished diazoxide-induced vasodilation in ZO compared with ZL rats. Maximal relaxation was 38 ± 3% in ZL vs. 21 ± 4% in ZO rats ( P < 0.05). Iberiotoxin, a Ca2+-activated K+ channel inhibitor, or manganese(III) tetrakis(4-benzoic acid)porphyrin chloride, an SOD mimetic, or endothelial denudation diminished vasodilation to diazoxide, implicating Ca2+-activated K+ channels, ROS, and endothelial factors in vasodilation. Inhibition of nitric oxide synthase (NOS) in ZL rats diminished diazoxide-induced vasodilation in intact arteries, but vasodilation was unaffected in endothelium-denuded arteries. In contrast, NOS inhibition in ZO rats enhanced vasodilation in endothelium-denuded arteries, but intact arteries were unaffected, suggesting that activity of endothelial NOS was abolished, whereas factors derived from nonendothelial NOS promoted vasoconstriction. Fluorescence microscopy showed decreased mitochondrial depolarization, ROS production, and nitric oxide generation in response to diazoxide in ZO arteries. Protein and mRNA measurements revealed increased expression of endothelial NOS and SODs in ZO arteries. Thus, cerebrovascular dilation to mitochondria-derived factors involves integration of endothelial and smooth muscle mechanisms. Furthermore, mitochondria-mediated vasodilation was diminished in ZO rats due to impaired mitochondrial KATP channel activation, diminished mitochondrial ROS generation, increased ROS scavenging, and abnormal NOS activity.

2012 ◽  
Vol 32 (5) ◽  
pp. 792-804 ◽  
Author(s):  
Prasad VG Katakam ◽  
James A Snipes ◽  
Mesia M Steed ◽  
David W Busija

Hyperinsulinemia accompanying insulin resistance (IR) is an independent risk factor for stroke. The objective is to examine the cerebrovascular actions of insulin in Zucker obese (ZO) rats with IR and Zucker lean (ZL) control rats. Diameter measurements of cerebral arteries showed diminished insulin-induced vasodilation in ZO compared with ZL. Endothelial denudation revealed vasoconstriction to insulin that was greater in ZO compared with ZL. Nonspecific inhibition of nitric oxide synthase (NOS) paradoxically improved vasodilation in ZO. Scavenging of reactive oxygen species (ROS), supplementation of tetrahydrobiopterin (BH4) precursor, and inhibition of neuronal NOS or NADPH oxidase or cyclooxygenase (COX) improved insulin-induced vasodilation in ZO. Immunoblot experiments revealed that insulin-induced phosphorylation of Akt, endothelial NOS, and expression of GTP cyclohydrolase-I (GTP-CH) were diminished, but phosphorylation of PKC and ERK was enhanced in ZO arteries. Fluorescence studies showed increased ROS in ZO arteries in response to insulin that was sensitive to NOS inhibition and BH4 supplementation. Thus, a vicious cycle of abnormal insulin-induced ROS generation instigating NOS uncoupling leading to further ROS production underlies the cerebrovascular IR in ZO rats. In addition, decreased bioavailability and impaired synthesis of BH4 by GTP-CH induced by insulin promoted NOS uncoupling.


2016 ◽  
Vol 310 (9) ◽  
pp. H1097-H1106 ◽  
Author(s):  
Prasad V. G. Katakam ◽  
Somhrita Dutta ◽  
Venkata N. Sure ◽  
Samuel M. Grovenburg ◽  
Angellica O. Gordon ◽  
...  

The diverse signaling events following mitochondrial depolarization in neurons are not clear. We examined for the first time the effects of mitochondrial depolarization on mitochondrial function, intracellular calcium, neuronal nitric oxide synthase (nNOS) activation, and nitric oxide (NO) production in cultured neurons and perivascular nerves. Cultured rat primary cortical neurons were studied on 7–10 days in vitro, and endothelium-denuded cerebral arteries of adult Sprague-Dawley rats were studied ex vivo. Diazoxide and BMS-191095 (BMS), activators of mitochondrial KATP channels, depolarized mitochondria in cultured neurons and increased cytosolic calcium levels. However, the mitochondrial oxygen consumption rate was unaffected by mitochondrial depolarization. In addition, diazoxide and BMS not only increased the nNOS phosphorylation at positive regulatory serine 1417 but also decreased nNOS phosphorylation at negative regulatory serine 847. Furthermore, diazoxide and BMS increased NO production in cultured neurons measured with both fluorescence microscopy and electron spin resonance spectroscopy, which was sensitive to inhibition by the selective nNOS inhibitor 7-nitroindazole (7-NI). Diazoxide also protected cultured neurons against oxygen-glucose deprivation, which was blocked by NOS inhibition and rescued by NO donors. Finally, BMS induced vasodilation of endothelium denuded, freshly isolated cerebral arteries that was diminished by 7-NI and tetrodotoxin. Thus pharmacological depolarization of mitochondria promotes activation of nNOS leading to generation of NO in cultured neurons and endothelium-denuded arteries. Mitochondrial-induced NO production leads to increased cellular resistance to lethal stress by cultured neurons and to vasodilation of denuded cerebral arteries.


2014 ◽  
Vol 307 (4) ◽  
pp. H493-H503 ◽  
Author(s):  
Prasad V. G. Katakam ◽  
Angellica O. Gordon ◽  
Venkata N. L. R. Sure ◽  
I. Rutkai ◽  
David W. Busija

Mitochondrial depolarization following ATP-sensitive potassium (mitoKATP) channel activation has been shown to induce cerebral vasodilation by generation of mitochondrial reactive oxygen species (ROS), which sequentially promotes frequency of calcium sparks and activation of large conductance calcium-activated potassium channels (BKCa) in vascular smooth muscle (VSM). We previously demonstrated that cerebrovascular insulin resistance accompanies aging and obesity. It is unclear whether mitochondrial depolarization without the ROS generation enhances calcium sparks and vasodilation in phenotypically normal [Sprague Dawley (SD); Zucker lean (ZL)] and insulin-resistant [Zucker obese (ZO)] rats. We compared the mechanisms underlying the vasodilation to ROS-dependent (diazoxide) and ROS-independent [BMS-191095 (BMS)] mitoKATP channel activators in normal and ZO rats. Arterial diameter studies from SD, ZL, and ZO rats showed that BMS as well as diazoxide induced vasodilation in endothelium-denuded cerebral arteries. In normal rats, BMS-induced vasodilation was mediated by mitochondrial depolarization and calcium sparks generation in VSM and was reduced by inhibition of BKCa channels. However, unlike diazoxide-induced vasodilation, scavenging of ROS had no effect on BMS-induced vasodilation. Electron spin resonance spectroscopy confirmed that diazoxide but not BMS promoted vascular ROS generation. BMS- as well as diazoxide-induced vasodilation, mitochondrial depolarization, and calcium spark generation were diminished in cerebral arteries from ZO rats. Thus pharmacological depolarization of VSM mitochondria by BMS promotes ROS-independent vasodilation via generation of calcium sparks and activation of BKCa channels. Diminished generation of calcium sparks and reduced vasodilation in ZO arteries in response to BMS and diazoxide provide new insights into mechanisms of cerebrovascular dysfunction in insulin resistance.


2011 ◽  
Vol 301 (5) ◽  
pp. H2093-H2101 ◽  
Author(s):  
Baptiste Kurtz ◽  
Helene B. Thibault ◽  
Michael J. Raher ◽  
John R. Popovich ◽  
Sharon Cawley ◽  
...  

Insulin resistance (IR) and systemic hypertension are independently associated with heart failure. We reported previously that nitric oxide synthase 3 (NOS3) has a beneficial effect on left ventricular (LV) remodeling and function after pressure-overload in mice. The aim of our study was to investigate the interaction of IR and NOS3 in pressure-overload-induced LV remodeling and dysfunction. Wild-type (WT) and NOS3-deficient (NOS3−/−) mice were fed either a standard diet (SD) or a high-fat diet (HFD) to induce IR. After 9 days of diet, mice underwent transverse aortic constriction (TAC). LV structure and function were assessed serially using echocardiography. Cardiomyocytes were isolated, and levels of oxidative stress were evaluated using 2′,7′-dichlorodihydrofluorescein diacetate. Cardiac mitochondria were isolated, and mitochondrial respiration and ATP production were measured. TAC induced LV remodeling and dysfunction in all mice. The TAC-induced decrease in LV function was greater in SD-fed NOS3−/− mice than in SD-fed WT mice. In contrast, HFD-fed NOS3−/− developed less LV remodeling and dysfunction and had better survival than did HFD-fed WT mice. Seven days after TAC, oxidative stress levels were lower in cardiomyocytes from HFD-fed NOS3−/− than in those from HFD-fed WT. Nω-nitro-l-arginine methyl ester and mitochondrial inhibitors (rotenone and 2-thenoyltrifluoroacetone) decreased oxidative stress levels in cardiomyocytes from HFD-fed WT mice. Mitochondrial respiration was altered in NOS3−/− mice but did not worsen after HFD and TAC. In contrast with its protective role in SD, NOS3 increases LV adverse remodeling after pressure overload in HFD-fed, insulin resistant mice. Interactions between NOS3 and mitochondria may be responsible for increased oxidative stress levels in HFD-fed WT mice hearts.


1997 ◽  
Vol 273 (2) ◽  
pp. H718-H724 ◽  
Author(s):  
H. Kinoshita ◽  
S. Milstien ◽  
C. Wambi ◽  
Z. S. Katusic

Tetrahydrobiopterin is an essential cofactor in biosynthesis of nitric oxide. The present study was designed to determine the effect of decreased intracellular tetrahydrobiopterin levels on endothelial function of isolated cerebral arteries. Blood vessels were incubated for 6 h in minimum essential medium (MEM) in the presence or absence of a GTP cyclohydrolase I inhibitor, 2,4-diamino-6-hydroxypyrimidine (DAHP, 10(-2) M). Rings with and without endothelium were suspended for isometric force recording in the presence of a cyclooxygenase inhibitor, indomethacin (10(-5) M). In arteries with endothelium, DAHP significantly reduced intracellular levels of tetrahydrobiopterin. DAHP in combination with a precursor of the salvage pathway of tetrahydrobiopterin biosynthesis, sepiapterin (10(-4) M), not only restored but increased levels of tetrahydrobiopterin above control values. In DAHP-treated arteries, endothelium-dependent relaxations to bradykinin (10(-10)-10(-6) M) or calcium ionophore A23187 (10(-9)-10(-6) M) were significantly reduced, whereas endothelium-independent relaxations to a nitric oxide donor, 3-morpholinosydnonimine (10(-9)-10(-4) M), were not affected. When DAHP-treated arteries with endothelium were incubated with sepiapterin (10(-4) M) or superoxide dismutase (150 U/ml), relaxations to bradykinin and A23187 were restored to control levels. In contrast, superoxide dismutase did not affect endothelium-dependent relaxations in arteries incubated in MEM. A nitric oxide synthase inhibitor, NG-nitro-L-arginine methyl ester (10(-4) M), abolished relaxations to bradykinin or A23187 in control arteries and in DAHP-treated arteries. These studies demonstrate that in cerebral arteries, decreased intracellular levels of tetrahydrobiopterin can reduce endothelium-dependent relaxations. Production of superoxide anions during activation of dysfunctional endothelial nitric oxide synthase appears to be responsible for the impairment of endothelial function.


1993 ◽  
Vol 606 (1) ◽  
pp. 148-155 ◽  
Author(s):  
Costantino Iadecola ◽  
Alvin J. Beitz ◽  
Waleed Renno ◽  
Xiaohong Xu ◽  
Bernd Mayer ◽  
...  

2006 ◽  
Vol 101 (1) ◽  
pp. 348-353 ◽  
Author(s):  
Rhonda D. Prisby ◽  
M. Keith Wilkerson ◽  
Elke M. Sokoya ◽  
Robert M. Bryan ◽  
Emily Wilson ◽  
...  

Cephalic elevations in arterial pressure associated with microgravity and prolonged bed rest alter cerebrovascular autoregulation in humans. Using the head-down tail-suspended (HDT) rat to chronically induce headward fluid shifts and elevate cerebral artery pressure, previous work has likewise shown cerebral perfusion to be diminished. The purpose of this study was to test the hypothesis that 2 wk of HDT reduces cerebral artery vasodilation. To test this hypothesis, dose-response relations for endothelium-dependent (2-methylthioadenosine triphosphate and bradykinin) and endothelium-independent (nitroprusside) vasodilation were determined in vitro in middle cerebral arteries (MCAs) from HDT and control rats. All in vitro measurements were done in the presence and absence of the nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester (10−5 M) and cyclooxygenase inhibitor indomethacin (10−5 M). MCA caveolin-1 protein content was measured by immunoblot analysis. Endothelium-dependent vasodilation to 2-methylthioadenosine triphosphate and bradykinin were both lower in MCAs from HDT rats. These lower vasodilator responses were abolished with NG-nitro-l-arginine methyl ester but were unaffected by indomethacin. In addition, HDT was associated with lower levels of MCA caveolin-1 protein. Endothelium-independent vasodilation was not altered by HDT. These results indicate that chronic cephalic fluid shifts diminish endothelium-dependent vasodilation through alterations in the endothelial nitric oxide synthase signaling mechanism. Such decrements in endothelium-dependent vasodilation of cerebral arteries could contribute to the elevations in cerebral vascular resistance and reductions in cerebral perfusion that occur after conditions of simulated microgravity in HDT rats.


Sign in / Sign up

Export Citation Format

Share Document