scholarly journals A role of the (pro)renin receptor in neuronal cell differentiation

2009 ◽  
Vol 297 (2) ◽  
pp. R250-R257 ◽  
Author(s):  
Aurelie Contrepas ◽  
Joy Walker ◽  
Annette Koulakoff ◽  
Karl J. Franek ◽  
Fatimunnisa Qadri ◽  
...  

The (pro)renin receptor [(P)RR] plays a pivotal role in the renin-angiotensin system. Experimental models emphasize the role of (P)RR in organ damage associated with hypertension and diabetes. However, a mutation of the (P)RR gene, resulting in frame deletion of exon 4 [Δ4-(P)RR] is associated with X-linked mental retardation (XLMR) and epilepsy pointing to a novel role of (P)RR in brain development and cognitive function. We have studied (P)RR expression in mouse brain, as well as the effect of transfection of Δ4-(P)RR on neuronal differentiation of rat neuroendocrine PC-12 cells induced by nerve growth factor (NGF). In situ hybridization showed a wide distribution of (P)RR, including in key regions involved in the regulation of blood pressure and body fluid homeostasis. In mouse neurons, the receptor is on the plasma membrane and in synaptic vesicles, and stimulation by renin provokes ERK1/2 phosphorylation. In PC-12 cells, (P)RR localized mainly in the Golgi and in endoplasmic reticulum and redistributed to neurite projections during NGF-induced differentiation. In contrast, Δ4-(P)RR remained cytosolic and inhibited NGF-induced neuronal differentiation and ERK1/2 activation. Cotransfection of PC-12 cells with (P)RR and Δ4-(P)RR cDNA resulted in altered localization of (P)RR and inhibited (P)RR redistribution to neurite projections upon NGF stimulation. Furthermore, (P)RR dimerized with itself and with Δ4-(P)RR, suggesting that the XLMR and epilepsy phenotype resulted from a dominant-negative effect of Δ4-(P)RR, which coexists with normal transcript in affected males. In conclusion, our results show that (P)RR is expressed in mouse brain and suggest that the XLMR and epilepsy phenotype might result from a dominant-negative effect of the Δ4-(P)RR protein.

2020 ◽  
Author(s):  
Szilvia Déri ◽  
János Borbás ◽  
Teodóra Hartai ◽  
Lidia Hategan ◽  
Beáta Csányi ◽  
...  

Abstract Aims Subunit interactions at the cytoplasmic domain interface (CD-I) have recently been shown to control gating in inward rectifier potassium channels. Here we report the novel KCNJ2 variant p.Glu293Lys that has been found in a patient with Andersen–Tawil syndrome type 1 (ATS1), causing amino acid substitution at the CD-I of the inward rectifier potassium channel subunit Kir2.1. Neither has the role of Glu293 in gating control been investigated nor has a pathogenic variant been described at this position. This study aimed to assess the involvement of Glu293 in CD-I subunit interactions and to establish the pathogenic role of the p.Glu293Lys variant in ATS1. Methods and results The p.Glu293Lys variant produced no current in homomeric form and showed dominant-negative effect over wild-type (WT) subunits. Immunocytochemical labelling showed the p.Glu293Lys subunits to distribute in the subsarcolemmal space. Salt bridge prediction indicated the presence of an intersubunit salt bridge network at the CD-I of Kir2.1, with the involvement of Glu293. Subunit interactions were studied by the NanoLuc® Binary Technology (NanoBiT) split reporter assay. Reporter constructs carrying NanoBiT tags on the intracellular termini produced no bioluminescent signal above background with the p.Glu293Lys variant in homomeric configuration and significantly reduced signals in cells co-expressing WT and p.Glu293Lys subunits simultaneously. Extracellularly presented reporter tags, however, generated comparable bioluminescent signals with heteromeric WT and p.Glu293Lys subunits and with homomeric WT channels. Conclusions Loss of function and dominant-negative effect confirm the causative role of p.Glu293Lys in ATS1. Co-assembly of Kir2.1 subunits is impaired in homomeric channels consisting of p.Glu293Lys subunits and is partially rescued in heteromeric complexes of WT and p.Glu293Lys Kir2.1 variants. These data point to an important role of Glu293 in mediating subunit assembly, as well as in gating of Kir2.1 channels.


2002 ◽  
Vol 13 (12) ◽  
pp. 4256-4265 ◽  
Author(s):  
Uriel Katz ◽  
Serge Ankri ◽  
Tamara Stolarsky ◽  
Yael Nuchamowitz ◽  
David Mirelman

The 260-kDa heterodimeric Gal/GalNAc-specific Lectin (Gal-lectin) of Entamoeba histolytica dissociates under reducing conditions into a heavy (hgl, 170 kDa) and a light subunit (lgl, 35 kDa). We have previously shown that inhibition of expression of the 35-kDa subunit by antisense RNA causes a decrease in virulence. To further understand the role of the light subunit of the Gal-lectin in pathogenesis, amoebae were transfected with plasmids encoding intact, mutated, and truncated forms of the light subunit lgl1 gene. A transfectant in which the 55 N-terminal amino acids of the lgl were removed, overproduced an N-truncated lgl protein (32 kDa), which replaced most of the native 35-kDa lgl in the formation of the Gal-lectin heterodimeric complex and exerted a dominant negative effect. Amoebae transfected with this construct showed a significant decrease in their ability to adhere to and kill mammalian cells as well as in their capacity to form rosettes with and to phagocytose erythrocytes. In addition, immunofluorescence confocal microscopy of this transfectant with anti–Gal-lectin antibodies showed an impaired ability to cap. These results indicate that the light subunit has a role in enabling the clustering of Gal-lectin complexes and that its N-truncation affects this function, which is required for virulence.


Author(s):  
Gabriel C. Dworschak ◽  
Jaya Punetha ◽  
Jeshurun C. Kalanithy ◽  
Enrico Mingardo ◽  
Haktan B. Erdem ◽  
...  

Abstract Purpose To investigate the effect of PLXNA1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and to functionally characterize the zebrafish homologs plxna1a and plxna1b during development. Methods We assembled ten patients from seven families with biallelic or de novo PLXNA1 variants. We describe genotype–phenotype correlations, investigated the variants by structural modeling, and used Morpholino knockdown experiments in zebrafish to characterize the embryonic role of plxna1a and plxna1b. Results Shared phenotypic features among patients include global developmental delay (9/10), brain anomalies (6/10), and eye anomalies (7/10). Notably, seizures were predominantly reported in patients with monoallelic variants. Structural modeling of missense variants in PLXNA1 suggests distortion in the native protein. Our zebrafish studies enforce an embryonic role of plxna1a and plxna1b in the development of the central nervous system and the eye. Conclusion We propose that different biallelic and monoallelic variants in PLXNA1 result in a novel neurodevelopmental syndrome mainly comprising developmental delay, brain, and eye anomalies. We hypothesize that biallelic variants in the extracellular Plexin-A1 domains lead to impaired dimerization or lack of receptor molecules, whereas monoallelic variants in the intracellular Plexin-A1 domains might impair downstream signaling through a dominant-negative effect.


PPAR Research ◽  
2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
Kimberly A. Placzkowski ◽  
Honey V. Reddi ◽  
Stefan K. G. Grebe ◽  
Norman L. Eberhardt ◽  
Bryan McIver

Thyroid cancer is uncommon and exhibits relatively low mortality rates. However, a subset of patients experience inexorable growth, metastatic spread, and mortality. Unfortunately, for these patients, there have been few significant advances in treatment during the last 50 years. While substantial advances have been made in recent years about the molecular genetic events underlying papillary thyroid cancer, the more aggressive follicular thyroid cancer remains poorly understood. The recent discovery of the PAX8/PPARγtranslocation in follicular thyroid carcinoma has promoted progress in the role of PPARγas a tumor suppressor and potential therapeutic target. The PAX8/PPARγfusion gene appears to be an oncogene. It is most often expressed in follicular carcinomas and exerts a dominant-negative effect on wild-type PPARγ, and stimulates transcription of PAX8-responsive promoters. PPARγagonists have shown promising results in vitro, although very few studies have been conducted to assess the clinical impact of these agents.


2006 ◽  
Vol 74 (3) ◽  
pp. 1786-1794 ◽  
Author(s):  
Christophe Genisset ◽  
Cesira L. Galeotti ◽  
Pietro Lupetti ◽  
David Mercati ◽  
David A. G. Skibinski ◽  
...  

ABSTRACT Most Helicobacter pylori strains secrete a toxin (VacA) that causes massive vacuolization of target cells and which is a major virulence factor of H. pylori. The VacA amino-terminal region is required for the induction of vacuolization. The aim of the present study was a deeper understanding of the critical role of the N-terminal regions that are protected from proteolysis when VacA interacts with artificial membranes. Using a counterselection system, we constructed an H. pylori strain, SPM 326-Δ49-57, that produces a mutant toxin with a deletion of eight amino acids in one of these protected regions. VacA Δ49-57 was correctly secreted by H. pylori but failed to oligomerize and did not have any detectable vacuolating cytotoxic activity. However, the mutant toxin was internalized normally and stained the perinuclear region of HeLa cells. Moreover, the mutant toxin exhibited a dominant negative effect, completely inhibiting the vacuolating activity of wild-type VacA. This loss of activity was correlated with the disappearance of oligomers in electron microscopy. These findings indicate that the deletion in VacA Δ49-57 disrupts the intermolecular interactions required for the oligomerization of the toxin.


2015 ◽  
Vol 83 (4) ◽  
pp. 1497-1506 ◽  
Author(s):  
Hannah M. Rowe ◽  
Brett R. Hanson ◽  
Donna L. Runft ◽  
Qian Lin ◽  
Steve M. Firestine ◽  
...  

The bacterial cell envelope is a crucial first line of defense for a systemic pathogen, with production of capsular polysaccharides and maintenance of the peptidoglycan cell wall serving essential roles in survival in the host environment. The LytR-CpsA-Psr proteins are important for cell envelope maintenance in many Gram-positive species. In this study, we examined the role of the extracellular domain of the CpsA protein of the zoonotic pathogen group BStreptococcusin capsule production and cell wall integrity. CpsA has multiple functional domains, including a DNA-binding/transcriptional activation domain and a large extracellular domain. We demonstrated that episomal expression of extracellularly truncated CpsA causes a dominant-negative effect on capsule production when expressed in the wild-type strain. Regions of the extracellular domain essential to this phenotype were identified. The dominant-negative effect could be recapitulated by addition of purified CpsA protein or a short CpsA peptide to cultures of wild-type bacteria. Changes in cell wall morphology were also observed when the dominant-negative peptide was added to wild-type cultures. Fluorescently labeled CpsA peptide could be visualized bound at the mid-cell region near the division septae, suggesting a novel role for CpsA in cell division. Finally, expression of truncated CpsA also led to attenuation of virulence in zebrafish models of infection, to levels below that of acpsAdeletion strain, demonstrating the key role of the extracellular domain in virulence of GBS.


1999 ◽  
Vol 19 (8) ◽  
pp. 5373-5382 ◽  
Author(s):  
Ronald Gary ◽  
Min S. Park ◽  
John P. Nolan ◽  
Helen L. Cornelius ◽  
Olga G. Kozyreva ◽  
...  

ABSTRACT Fen1/Rad27 nuclease activity, which is important in DNA metabolism, is stimulated by proliferating cell nuclear antigen (PCNA) in vitro. The in vivo role of the PCNA interaction was investigated in the yeast Rad27. A nuclease-defective rad27 mutation had a dominant-negative effect that was suppressed by a mutation in the PCNA binding site, thereby demonstrating the importance of the Rad27-PCNA interaction. The PCNA-binding defect alone had little effect on mutation, recombination, and the methyl methanesulfonate (MMS) response in repair-competent cells, but it greatly amplified the MMS sensitivity of a rad51 mutant. Furthermore, the PCNA binding mutation resulted in lethality when combined with a homozygous or even a heterozygous pol3-01 mutation in the 3′→5′ exonuclease domain of DNA polymerase δ. These results suggest that phenotypically mild polymorphisms in DNA metabolic proteins can have dramatic consequences when combined.


Genetics ◽  
1996 ◽  
Vol 144 (4) ◽  
pp. 1455-1462
Author(s):  
José L Barra ◽  
Mario R Mautino ◽  
Alberto L Rosa

eth-1r a thermosensitive allele of the Neurospora crassa S-adenosylmethionine (AdoMet) synthetase gene that confers ethionine resistance, has been cloned and sequenced. Replacement of an aspartic amino acid residue (D48 → N48), perfectly conserved in prokaryotic, fungal and higher eukaryotic AdoMet synthetases, was found responsible for both thermosensitivity and ethionine resistance conferred by eth-1r. Gene fusion constructs, designed to overexpress eth-1r in vivo, render transformant cells resistant to ethionine. Dominance of ethionine resistance was further demonstrated in eth-1  +/eth-1r partial diploids carrying identical gene doses of both alleles. Heterozygous eth-1  +/eth-1r cells have, at the same time, both the thermotolerance conferred by eth-1  + and the ethionine-resistant phenotype conferred by eth-1r. AdoMet levels and AdoMet synthetase activities were dramatically decreased in heterozygous eth-1  +/eth-1r cells. We propose that this negative effect exerted by eth-1r results from the in vivo formation of heteromeric eth-1  +/eth-1r AdoMet synthetase molecules.


Genetics ◽  
2002 ◽  
Vol 162 (2) ◽  
pp. 633-645 ◽  
Author(s):  
Guido Cuperus ◽  
David Shore

Abstract We previously described two classes of SIR2 mutations specifically defective in either telomeric/HM silencing (class I) or rDNA silencing (class II) in S. cerevisiae. Here we report the identification of genes whose protein products, when either overexpressed or directly tethered to the locus in question, can establish silencing in SIR2 class I mutants. Elevated dosage of SCS2, previously implicated as a regulator of both inositol biosynthesis and telomeric silencing, suppressed the dominant-negative effect of a SIR2-143 mutation. In a genetic screen for proteins that restore silencing when tethered to a telomere, we isolated ESC2 and an uncharacterized gene, (YOL017w), which we call ESC8. Both Esc2p and Esc8p interact with Sir2p in two-hybrid assays, and the Esc8p-Sir2 interaction is detected in vitro. Interestingly, Esc8p has a single close homolog in yeast, the ISW1-complex factor Ioc3p, and has also been copurified with Isw1p, raising the possibility that Esc8p is a component of an Isw1p-containing nucleosome remodeling complex. Whereas esc2 and esc8 deletion mutants alone have only marginal silencing defects, cells lacking Isw1p show a strong silencing defect at HMR but not at telomeres. Finally, we show that Esc8p interacts with the Gal11 protein, a component of the RNA pol II mediator complex.


Sign in / Sign up

Export Citation Format

Share Document