Role of renal nerves in stimulation of renin, COX-2, and nNOS in rat renal cortex during salt deficiency

2002 ◽  
Vol 282 (3) ◽  
pp. F478-F484 ◽  
Author(s):  
K. Höcherl ◽  
M. Kammerl ◽  
F. Kees ◽  
B. K. Krämer ◽  
H. F. Grobecker ◽  
...  

We investigated a possible involvement of the sympathetic nervous system in the parallel increase of renin, cyclooxygenase-2 (COX-2), and neuronal nitric oxide synthase (nNOS) gene expression in the juxtaglomerular apparatus of rat kidneys induced by salt deficiency. Therefore, we determined the effects of renal denervation and the β-adrenoreceptor antagonist metoprolol (50 mg/kg body wt po, twice a day) on renocortical expression of renin, COX-2, and nNOS in rats fed a low-salt (0.02% wt/wt) diet or treated for 1 wk with ramipril (10 mg/kg body wt) in combination with a low-salt diet. We found that a low-salt diet in combination with ramipril strongly increased renocortical mRNA levels of renin, COX-2, and nNOS 9-, 7-, and 2.5-fold, respectively. Treatment with metoprolol did not change basal expression of the three genes or induction of renin and COX-2 gene expression, while induction of nNOS expression was clearly attenuated. Similarly, unilateral renal denervation attenuated induction of nNOS expression but had no effect on all other parameters. These findings suggest that β-adrenergic stimulation is not required for stimulation of renin and COX-2 gene expression in the juxtaglomerular apparatus during salt deficiency. However, β-adrenoreceptor activity or renal nerve activity appears to be required for the full stimulation of nNOS expression by low salt intake or combined with angiotensin-converting enzyme inhibition.

2002 ◽  
Vol 282 (6) ◽  
pp. R1613-R1617 ◽  
Author(s):  
Martin C. Kammerl ◽  
Wolfgang Richthammer ◽  
Armin Kurtz ◽  
Bernhard K. Krämer

Salt restriction leads to parallel increases of renin, cyclooxygenase-2 (COX-2), and neuronal nitric oxide synthase (nNOS) gene expression in the juxtaglomerular apparatus of rat kidneys. Because the upregulation of these genes is strongly enhanced if salt restriction is combined with inhibition of the renin-angiotensin-aldosterone system, our study aimed to find out whether the juxtaglomerular expressions of renin, COX-2, and nNOS are subject to a common direct negative feedback control by ANG II. For this purpose, male Sprague-Dawley rats were fed a low-salt diet (0.02% wt/wt) with or without additional treatment with the ANG I-converting enzyme (ACE) inhibitor ramipril (10 mg · kg body wt−1 · day−1) for 1 wk, and renocortical renin, COX-2, and nNOS mRNAs were assayed. To narrow down possible indirect effects of the ACE inhibitor that may result from insufficient aldosterone production, the animals received mineralocorticoid substitution with fludrocortisone (6 mg · kg body wt−1 · day−1). Thus mineralocorticoid substitution prevented the fall of systolic blood pressure and of glomerular filtration induced by ramipril in rats on low-salt diet. Although fludrocortisone had no effect on basal renin, COX-2, and nNOS mRNA, it clearly attenuated the threefold increases of both renin and COX-2 mRNA in response to low-salt diet. In rats on low-salt diet, ramipril further increased renin mRNA ninefold, COX-2 mRNA fourfold, and nNOS 2.5-fold in the absence of fludrocortisone. In the presence of fludrocortisone, ramipril increased renin mRNA 10-fold, COX-2 mRNA 2.5-fold, and nNOS mRNA 2.5-fold. These data indicate that mineralocorticoid substitution lowers the overall expression of juxtaglomerular renin and COX-2 during low-salt intake and attenuates a further rise of COX-2 expression by ACE inhibition, but it does not change the stimulatory effect of ACE inhibition on renin and nNOS expression. We conclude that the expression of renin, COX-2, and nNOS in the juxtaglomerular apparatus during low-salt diet is markedly limited by a direct feedback inhibition through ANG II.


2012 ◽  
Vol 13 (3) ◽  
pp. 353-359 ◽  
Author(s):  
MA Bayorh ◽  
A Rollins-Hairston ◽  
J Adiyiah ◽  
D Lyn ◽  
D Eatman

Introduction: The upregulation of cyclooxygenase (COX) expression by aldosterone (ALDO) or high salt diet intake is very interesting and complex in the light of what is known about the role of COX in renal function. Thus, in this study, we hypothesize that apocynin (APC) and/or eplerenone (EPL) inhibit ALDO/salt-induced kidney damage by preventing the production of prostaglandin E2 (PGE2). Methods: Dahl salt-sensitive rats on either a low-salt or high-salt diet were treated with ALDO (0.2 mg pellet) in the presence of EPL (100 mg/kg/day) or APC (1.5 mM). Indirect blood pressure, prostaglandins and ALDO levels and histological changes were measured. Results: Cyclooxygenase-2 (COX-2) levels were upregulated in the renal tubules and peritubular vessels after high-salt intake, and APC attenuated renal tubular COX-2 protein expression induced by ALDO. Plasma PGE2 levels were significantly reduced by ALDO in the rats fed a low-salt diet when compared to rats fed a high-salt diet. PGE2 was blocked by EPL but increased in the presence of APC. Conclusions: The beneficial effects of EPL may be associated with an inhibition of PGE2. The mechanism underlying the protective effects of EPL is clearly distinct from that of APC and suggests that these agents can have differential roles in cardiovascular disease.


1987 ◽  
Vol 166 (3) ◽  
pp. 810-815 ◽  
Author(s):  
Y Kaufmann ◽  
T Silverman ◽  
B Z Levi ◽  
K Ozato

Expression of cellular oncogenes was studied in a T cell hybridoma that undergoes cytolytic activation when stimulated by specific antigen or by anti-Thy-1 antibody. The activation occurs without induction of hybridoma proliferation, providing a model to examine oncogene expression during functional differentiation of lymphocytes. We found that c-fos and c-ets-1 mRNAs were transiently induced at high levels in the hybridoma 30 min and 4 h after stimulation, respectively. c-myc and c-ets-2 oncogenes were constitutively expressed in the hybridoma and their mRNA levels were unaffected during 4 h of stimulation, although c-myc expression was reduced in the later stage of stimulation. Inhibitors of T cell activation, cyclosporin A and anti-LFA-1 antibody, blocked the induction of c-fos and c-ets-1 mRNAs without reducing the levels of c-myc and c-ets-2. The results indicate that the functional activation of the CTL hybridoma is associated with induction of c-fos and c-ets-1 genes.


1995 ◽  
Vol 269 (6) ◽  
pp. F793-F805 ◽  
Author(s):  
H. M. Bosse ◽  
R. Bohm ◽  
S. Resch ◽  
S. Bachmann

Four chronic experiments were performed to assess changes in the activity and gene expression of type I nitric oxide synthase (NOS) at the macula densa (MD) and of renin expression and immunoreactivity (IR) at the juxtaglomerular apparatus (JGA) of rat kidney, as follows: 1) two-kidney, one-clip Goldblatt hypertension (2K1C, for 3 and 40 days; sham operation for controls), 2) furosemide treatment (150 mg/kg-1.day-1 ip for 5 days), 3) chronic low-salt diet (0.02%) vs. high-salt diet (3%; both for 11 days), and 4) chronic blockade of NOS by nitro-L-arginine methyl ester (L-NAME, 40 mg.kg-1.day-1 for 2 mo). NOS and renin gene expression, NOS enzyme activity and renin IR were semiquantitatively evaluated with histochemical methods (NADPH diaphorase, in situ hybridization, immunohistochemistry). In 2K1C, marked increases were induced in NOS and renin in the ischemic vs. contralateral kidneys both after 3 and 40 days, respectively (P < 0.05). Related to controls, significant increases in the ischemic kidney were encountered after 3 and 40 days, whereas contralateral suppression of NOS and renin was found only after 40 days. Furosemide treatment resulted in a marked increase of both NOS and renin levels compared with controls (P < 0.05). Salt restriction induced a significant elevation of NOS levels compared with salt loading (P < 0.05), whereas only minor changes were evident in renin levels. L-NAME treatment resulted in a moderate reduction of NOS activity (not significant), whereas renin levels were markedly reduced (P < 0.05). These results show that NOS activity and gene expression are inversely related to chronic changes in renal perfusion, salt balance, and salt transport at the distal tubule in parallel with the known response of renin to these changes. Inhibition of NOS decreases renin levels at the JGA. The histochemical findings support previous concepts that MD-derived NO is involved in the control of renin synthesis.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1164-1164
Author(s):  
Hiroki Kato ◽  
Ari Itoh-Nakadai ◽  
Risa Ebina-Shibuya ◽  
Masahiro Kobayashi ◽  
Mitsuyo Matsumoto ◽  
...  

Abstract Background: Erythrocyte and granulocyte/macrophage develop from common myeloid progenitor (CMP) (Akashi et al., 2000). Differentiation of hematopoietic progenitor cells is precisely controlled by multiple transcription factors, among which GATA1, C/EBPα, C/EBPβ and Spi-C play pivotal roles in erythrocyte and granulocyte/macrophage differentiation (Mancini et al., 2012; Pongubala et al., 2008; Hirai et al., 2006; Haldar et al., 2014). However, the mechanism by which the differentiation of CMP controlled under infectious condition has been unclear. Bach1 and Bach2 belong to the basic region-leucine zipper family and recognize Maf-recognition elements (Oyake et al., 1996). They promote B cell development by repressing the myeloid genes such as Cebpb and Spic in common lymphoid progenitor cells (Itoh-Nakadai et al., 2014). In addition, Bach1 regulates several target genes related to iron/heme homeostasis such as globin genes and hemeoxygenase-1, and Bach2 may similarly regulate these genes (Igarashi, 2014). Therefore, it is expected that both Bach1 and Bach2 play redundant roles in erythropoiesis. To figure out their roles in erythroid and myeloid cell differentiation, we performed hematological and transcriptomics analyses using Bach1-/- Bach2-/- (double-deficient; DD) mice. Methods: The generation of DD mice on the C57BL/6J background and Bach2 reporter mice with red fluorescent protein coding cDNA inserted in the Bach2 locus were described previously (Itoh-Nakadai et al., 2014). Mice between 8-12 weeks old were analyzed in the present study. Bone marrow (BM) cells were stained with specific combinations of antibodies to identify erythroid/myeloid progenitor and mature cells (Sheila et al., 2008; Cornelis et al., 2007; Socolovsky et al., 2001). Flow cytometry analysis and cell sorting were performed by using FACSAriaⅡ(BD) and FlowJo software (TreeStar). For infectious simulation of CMP, sorted CMPs were incubated with 1μg/ml LPS (Sigma) for 48h and RNA was purified with RNeasy micro kit (Qiagen). Quantitative PCR by using SuperscriptⅢ reverse transcriptase (Invitrogen) and Light Cycler system (Roche) was performed according to manufacturer's instructions. Microarray analysis by using Sure-Print G3 mouse GE microarray slide (Agilent) was performed as previously described (Itoh-Nakadai et al., 2014) and the results were analyzed by using GeneSpring software (Agilent). We used Gene Set Enrichment Analysis (GSEA) to interpret gene expression data (Subramanian et al., 2005; Mootha et al., 2003). LPS stimulation (50 μg/body) of mice was performed as previously described (Ryan et al., 2008). Data were analyzed by the two-sided Student's t-test and p - values of <0.05 were considered statistically significant. Results: DD mice show mild normocytic anemia compered to wild-type (WT), Bach1-/-, and Bach2-/- mice (hemoglobin; 14.4±0.2, 14.0±0.3, 13.5±0.3 and 11.9±0.7 g/dl, for WT, Bach1-/-, Bach2-/- and DD, respectively, p<0.05 for comparison between DD and other genotypes, n=7). Immature and mature erythroblast populations were significantly decreased in BM of DD (immature; 25.8±1.78, 15.6±1.4, mature; 27.6±3.3, 17.4±2.3×106/body for WT and DD, respectively, p<0.05, n=6). Megakaryocyte-erythroid progenitor (MEP)/granulocyte-monocyte progenitor (GMP) ratio was significantly decreased in BM of DD (MEP/GMP: 0.13±0.01, 0.07±0.01 for WT and DD, respectively, p<0.05, n=5). Bach2 expression was detected in CMP, MEP and even GMP by using Bach2-RFP mice. LPS stimulation of WT CMP significantly decreased mRNA levels of Bach1, Bach2 and Gata1. On the other hand, Cebpb and Spic mRNA levels were significantly increased. LPS stimulation of WT mice induced significant increase of granulocyte and decrease of erythrocyte and B lymphocyte in BM, which was consistent with previous reports. It was also shown that LPS stimulation significantly decreased MEP/ GMP ratio. According to the clustering analysis of the microarray data of CMP sorted from WT and DD mice, they showed clearly different expression profiles. GSEA showed that CMP of DD skewed to myeloid cell lineage and lost the erythroid gene expression compared to WT. Conclusions: Bach1 and Bach2 control the differentiation of CMP to erythroid cell or myeloid cell by repressing myeloid genes such as Cebpb and Spic. Infectious stimuli may promote myeloid cell differentiation by reducing the expression of Bach1 and Bach2 in CMP. Disclosures Fujiwara: Chugai Pharmaceutical CO., LTD: Research Funding. Harigae:Chugai Pharmaceutical CO., LTD: Research Funding.


2004 ◽  
Vol 287 (1) ◽  
pp. F95-F101 ◽  
Author(s):  
Frank Schweda ◽  
Martin Kammerl ◽  
Charlotte Wagner ◽  
Bernhard K. Krämer ◽  
Armin Kurtz

Although the regulation of cyclooxygenase-2 (COX-2) expression in the kidney cortex has been extensively characterized, the physiological control mechanisms of COX-2 expression at the level of the kidney and at the level of the tubular cells are not well understood. Based on the current hypothesis that tubular salt transport might be a crucial regulator of COX-2 expression, this study aimed to determine the impact of salt delivery to the tubules (glomerular filtration) for the regulation of COX-2 in the kidney cortex in vivo. To this end, glomerular filtration of the right kidney was abrogated by the ligation of the right ureter of male Sprague-Dawley rats. After 1 wk of ligation, the animals were treated with subcutaneous infusions of furosemide (12 mg·kg−1·day−1) or with a low-salt or a high-salt diet (0.02% wt/wt; 8% wt/wt), and COX-2 as well as renin mRNA expression were determined in the ligated and the nonligated contralateral kidney. During ureteral ligation, hydronephrosis developed with a reduction of medullary mass, while the cortex was preserved. Expressions of the Na-K-2Cl cotransporter isoforms A and B were both reduced in the hydronephrotic cortex to 70 and 35% of the corresponding contralateral intact kidney. Despite the abrogation of glomerular filtration, detected by inulin clearance measurements, renocortical COX-2 mRNA abundance was stimulated by furosemide treatment (3.2-fold) or low-salt diet (2.9-fold) to similar degrees compared with the intact contralateral kidney (2.7-fold for both treatments), whereas a high-salt diet did not significantly suppress COX-2 mRNA in the macula densa region of either kidney. Renin mRNA expression was regulated strictly in parallel in both kidneys, a low-salt diet or furosemide treatment stimulating and a high-salt diet suppressing it. We conclude from these findings that salt delivery to the tubules is not an essential requirement for the upregulation of COX-2 by salt deficiency or by loop diuretics in the rat kidney cortex nor is it for chronic stimulation of renin mRNA expression.


2016 ◽  
Author(s):  
Maiko Arashiro ◽  
Ying-Hsuan Lin ◽  
Kenneth G. Sexton ◽  
Zhenfa Zhang ◽  
Ilona Jaspers ◽  
...  

Abstract. Atmospheric oxidation of isoprene, the most abundant non-methane hydrocarbon emitted into Earth’s atmosphere primarily from terrestrial vegetation, is now recognized as a major contributor to the global secondary organic aerosol (SOA) burden. Anthropogenic pollutants significantly enhance isoprene SOA formation through acid-catalyzed heterogeneous chemistry of epoxide products. Since isoprene SOA formation as a source of fine aerosol is a relatively recent discovery, research is lacking on evaluating its potential adverse effects on human health. The objective of this study was to examine the effect of isoprene-derived SOA on inflammation-associated gene expression in human lung cells using a direct deposition exposure method. We assessed altered expression of inflammation-related genes in human bronchial epithelial cells (BEAS-2B) exposed to isoprene-derived SOA generated in an outdoor chamber facility. Measurements of gene expression of known inflammatory biomarkers interleukin 8 (IL-8) and cyclooxygenase 2 (COX-2) in exposed cells, together with complementary chemical measurements, showed that a dose of 0.067 µg cm−2 of SOA from isoprene photooxidation leads to statistically significant increases in IL-8 and COX-2 mRNA levels. Resuspension exposures using aerosol filter extracts corroborated these findings, supporting the conclusion that isoprene-derived SOA constituents induce the observed changes in mRNA levels. Future studies are needed to systematically examine the molecular mechanisms of toxicity.


1998 ◽  
Vol 274 (3) ◽  
pp. F481-F489 ◽  
Author(s):  
Tianxin Yang ◽  
Inderjit Singh ◽  
Hang Pham ◽  
Daqing Sun ◽  
Ann Smart ◽  
...  

The present studies were undertaken to determine the effect of dietary salt intake on the renal expression of cyclooxygenase-1 (COX-1) and -2 (COX-2). Protein levels were assessed by Western blotting, and mRNA expression was assessed by reverse transcription-polymerase chain reaction (RT-PCR) on cDNA prepared from kidney regions, dissected nephron segments, and cultured renal cells. Both isoforms were expressed at high levels in inner medulla (IM), with low levels detected in outer medulla and cortex. COX-1 mRNA was present in the glomerulus and all along the collecting duct, whereas COX-2 mRNA was restricted to the macula densa-containing segment (MD), cortical thick ascending limb (CTAL), and, at significantly lower levels, in the inner medullary collecting duct. Both isoforms were highly expressed at high levels in cultured medullary interstitial cells and at lower levels in primary mesangial cells and collecting duct cell lines. Maintaining rats on a low- or high-NaCl diet for 1 wk did not affect expression of COX-1. In IM of rats treated with a high-salt diet, COX-2 mRNA increased 4.5-fold, and protein levels increased 9.5-fold. In contrast, cortical COX-2 mRNA levels decreased 2.9-fold in rats on a high-salt diet and increased 3.3-fold in rats on a low-salt diet. A low-salt diet increased COX-2 mRNA 7.7-fold in MD and 3.3-fold in CTAL. Divergent regulation of COX-2 in cortex and medulla by dietary salt suggests that prostaglandins in different kidney regions serve different functions, with medullary production playing a role in promoting the excretion of salt and water in volume overload, whereas cortical prostaglandins may protect glomerular circulation in volume depletion.


1998 ◽  
Vol 20 (2) ◽  
pp. 261-270 ◽  
Author(s):  
T Engstrom ◽  
P Bratholm ◽  
H Vilhardt ◽  
NJ Christensen

The nona-peptide oxytocin (OT) induces contraction of the myometrium by interaction with specific plasma membrane associated OT receptors (OTR), whereas stimulation of beta2-adrenoceptors (beta2AR) causes relaxation. Homologous desensitization of the myometrium to both hormones has been described. However, a possible interaction between the two systems has not been investigated. In the present study, long-term in vivo treatment of non-pregnant estrogen-primed rats with isoproterenol decreased maximal relaxation of isolated uterine strips challenged with isoproterenol. Increased EC50 values of similarly treated animals suggest that the coupling between receptor occupancy and contractile response was impaired. Since beta2AR mRNA levels were left unchanged, we conclude that the homologous desensitization to beta2 stimulation is not due to changes in beta2AR gene expression. OT infusion did not alter beta2AR mRNA levels or isoproterenol-induced relaxation of isolated uterine strips. Treatment with OT had no effect on the amount of myometrial OTR mRNA. We have previously found that OT down-regulates OTR in the non-pregnant rat myometrium, but this therefore does not appear to take place at the level of mRNA production. Isoproterenol treatment resulted in a three-fold increase in OTR mRNA. This was accompanied by a 91% rise in OTR binding and an augmented contractile response of isolated uterine strips to OT, suggesting that the increased production of mRNA reflects formation of active receptors. Neither OTR affinity nor EC50 of in vitro strips was affected by isoproterenol treatment. We conclude that stimulation of beta2AR causes heterologous up-regulation of OTR in the non-pregnant estrogen-primed rat myometrium.


2006 ◽  
Vol 290 (6) ◽  
pp. G1243-G1251 ◽  
Author(s):  
Kazuhiro Nagata ◽  
Ken Wada ◽  
Atsushi Tatsuguchi ◽  
Seiji Futagami ◽  
Katya Gudis ◽  
...  

We have previously shown heregulin (HRG)-α expression in human gastric fibroblasts and its stimulation of gastric epithelial cell growth. Although cyclooxygenase (COX)-2 has also been shown to stimulate growth factor production in these cells, the interaction between COX-2 and HRG remains unknown. Conditioned media (CM) from gastric fibroblasts incubated with PGE2 or interleukin (IL)-1β, a well known COX-2 inducer, were analyzed for their effect on erbB3 tyrosine phosphorylation in MKN28 gastric epithelial cells. HRG protein expression in fibroblast lysates and CM was also examined by western blot. HRG-α and HRG-β mRNA expression in gastric fibroblasts and human gastric tissue was examined by real-time quantitative PCR. HRG and COX-2 expressions in surgical resections of human gastric ulcer tissue were examined immunohistochemically. CM from fibroblasts incubated with PGE2, or IL-1β, stimulated erbB3 phosphorylation in MKN28 cells. Preincubation of the fibroblasts with celecoxib, a selective COX-2 inhibitor, suppressed CM-induced erbB3 phosphorylation. This inhibition was reversed by exogenous PGE2. As with erbB3 phophorylation, IL-1β stimulated both HRG-α and HRG-β mRNA expression, as well as HRG release into gastric fibroblast CM. IL-1β-stimulated HRG expression and release were also inhibited by celecoxib, and exogenous PGE2 restored this inhibitory effect, suggesting the activation of an IL-1β-COX-2-PGE2 pathway that culminates in the release of HRG from fibroblasts. HRG-α and HRG-β mRNA levels were significantly higher in gastric ulcer tissue than in normal gastric mucosa. HRG immunoreactivity was found in interstitial cells of the gastric ulcer bed and coexpressed with COX-2. These results suggest that HRG might be a new member of the growth factor family involved in the COX-2-dependent ulcer repair process.


Sign in / Sign up

Export Citation Format

Share Document