scholarly journals Angiotensin II-induced hypertension blunts thick ascending limb NO production by reducing NO synthase 3 expression and enhancing threonine 495 phosphorylation

2015 ◽  
Vol 308 (2) ◽  
pp. F149-F156 ◽  
Author(s):  
Vanesa D. Ramseyer ◽  
Agustin Gonzalez-Vicente ◽  
Oscar A. Carretero ◽  
Jeffrey L. Garvin

Thick ascending limbs reabsorb 30% of the filtered NaCl load. Nitric oxide (NO) produced by NO synthase 3 (NOS3) inhibits NaCl transport by this segment. In contrast, chronic angiotensin II (ANG II) infusion increases net thick ascending limb transport. NOS3 activity is regulated by changes in expression and phosphorylation at threonine 495 (T495) and serine 1177 (S1177), inhibitory and stimulatory sites, respectively. We hypothesized that NO production by thick ascending limbs is impaired by chronic ANG II infusion, due to reduced NOS3 expression, increased phosphorylation of T495, and decreased phosphorylation of S1177. Rats were infused with 200 ng·kg−1·min−1ANG II or vehicle for 1 and 5 days. ANG II infusion for 5 days decreased NOS3 expression by 40 ± 12% ( P < 0.007; n = 6) and increased T495 phosphorylation by 147 ± 26% ( P < 0.008; n = 6). One-day ANG II infusion had no significant effect. NO production in response to endothelin-1 was blunted in thick ascending limbs from ANG II-infused animals [ANG II −0.01 ± 0.06 arbitrary fluorescence units (AFU)/min vs. 0.17 ± 0.02 AFU/min in controls; P < 0.01]. This was not due to reduced endothelin-1 receptor expression. Phosphatidylinositol 3,4,5-triphosphate (PIP3)-induced NO production was also reduced in ANG II-infused rats (ANG II −0.07 ± 0.06 vs. 0.13 ± 0.04 AFU/min in controls; P < 0.03), and this correlated with an impaired ability of PIP3 to increase S1177 phosphorylation. We conclude that in ANG II-induced hypertension NO production by thick ascending limbs is impaired due to decreased NOS3 expression and altered phosphorylation.

2000 ◽  
Vol 279 (6) ◽  
pp. F1092-F1100 ◽  
Author(s):  
Jörg Schwöbel ◽  
Tina Fischer ◽  
Bettina Lanz ◽  
Markus Mohaupt

Angiotensin II (ANG II) and nitric oxide (NO) have contrasting vascular effects, yet both sustain inflammatory responses. We investigated the impact of ANG II on lipopolysaccharide (LPS)/interferon-γ (IFN)-induced NO production in cultured rat mesangial cells (MCs). LPS/IFN-induced nitrite production, the inducible form of nitric oxide synthase (NOS-2) mRNA, and protein expression were dose dependently inhibited by ANG II on coincubation, which was abolished on ANG II type 2 (AT2) receptor blockade by PD-123319. Homology-based RT-PCR verified the presence of AT1A, AT1B, and AT2 receptors. To shift the AT receptor expression toward the type 1 receptor, two sets of experiments were performed: LPS/IFN preincubation for 24 h was followed by 8-h coincubation with ANG II; or during 24-h coincubation of LPS/IFN and ANG II, dexamethasone was added for the last 6-h period. Both led to an amplified overall expression of NOS-2 protein and NO production that was inhibitable by actinomycin D in the first setup. Induced NO production was enhanced via the AT1 receptor; however, it was diminished via the AT2 receptor. In conclusion, induced NO production is negatively controlled by the AT2, whereas AT1 receptor stimulation enhanced NO synthesis in MCs. The overall NO availability depended on the onset of the inflammatory stimuli with respect to ANG II exposure and the available AT receptors.


1998 ◽  
Vol 274 (1) ◽  
pp. C214-C220 ◽  
Author(s):  
Maria E. Pueyo ◽  
Jean-François Arnal ◽  
Jacques Rami ◽  
Jean-Baptiste Michel

Angiotensin II (ANG II) produces vasoconstriction by a direct action on smooth muscle cells via AT1 receptors. These receptors are also present in the endothelium, but their function is poorly understood. This study was therefore undertaken to determine whether ANG II elicits the release of nitric oxide (NO) from cultured rat aortic endothelial cells. NO production, measured by the accumulation of nitrite and nitrate, was enhanced by 10−7 M ANG II. The biological activity of the NO released by ANG II action was evaluated by measuring its guanylate cyclase-stimulating activity in smooth muscle cells. The guanosine 3′,5′-cyclic monophosphate (cGMP) content of smooth muscle cells was significantly increased by exposure of supernatant from ANG II-stimulated endothelial cells. These effects resulted from the activation of NO synthase, as they were inhibited by the l-arginine analogs. These ANG II actions were mediated by the AT1 receptor, as shown by their inhibition by the AT1 antagonist losartan. The cGMP production by reporter cells was inhibited by the calmodulin antagonist W-7, suggesting that ANG II activates endothelial calmodulin-dependent NO synthase. This hypothesis is also supported by the increase of intracellular free calcium induced by ANG II in endothelial cells. ANG II also stimulated luminol-enhanced chemiluminescence in endothelial cells. This effect was inhibited by N ω-monomethyl-l-arginine and superoxide dismutase, suggesting that this luminol-enhanced chemiluminescence reflected an increase in peroxynitrite production. Thus ANG II stimulates NO release from macrovascular endothelium, which may modulate the direct vasoconstrictor effect of ANG II on smooth muscle cells. However, this beneficial effect may be counteracted by the simultaneous production of peroxynitrite, which could contribute to several pathological processes in the vascular wall.


2016 ◽  
Vol 310 (4) ◽  
pp. F294-F299 ◽  
Author(s):  
Michel Baum

Angiotensin II (ANG II) is secreted by the proximal tubule resulting in a luminal concentration that is 100- to 1,000-fold greater than that in the blood. Luminal ANG II has been shown to stimulate sodium transport in the proximal tubule and distal nephron. Surprisingly, luminal ANG II inhibits NaCl transport in the medullary thick ascending limb (mTAL), a nephron segment responsible for a significant amount of NaCl absorption from the glomerular ultrafiltrate. We confirmed that addition of 10−8 M ANG II to the lumen inhibited mTAL chloride transport (220 ± 19 to 165 ± 25 pmol·mm−1·min−1, P < 0.01) and examined whether an interaction with basolateral norepinephrine existed to simulate the in vivo condition of an innervated tubule. We found that in the presence of a 10−6 M norepinephrine bath, luminal ANG II stimulated mTAL chloride transport from 298 ± 18 to 364 ± 42 pmol·mm−1·min−1 ( P < 0.05). Stimulation of chloride transport by luminal ANG II was also observed with 10−3 M bath dibutyryl cAMP in the bathing solution and bath isoproterenol. A bath of 10−5 H-89 blocked the stimulation of chloride transport by norepinephrine and prevented the effect of luminal ANG II to either stimulate or inhibit chloride transport. Bath phentolamine, an α-adrenergic agonist, also prevented the decrease in mTAL chloride transport by luminal ANG II. Thus luminal ANG II increases chloride transport with basolateral norepinephrine; an effect likely mediated by stimulation of cAMP. Alpha-1 adrenergic stimulation prevents the inhibition of chloride transport by luminal ANG II.


2013 ◽  
Vol 305 (9) ◽  
pp. F1306-F1314 ◽  
Author(s):  
Agustin Gonzalez-Vicente ◽  
Jeffrey L. Garvin

Thick ascending limbs (TAL) reabsorb 30% of the filtered NaCl load. Na enters the cells via apical Na-K-2Cl cotransporters and Na/H exchangers and exits via basolateral Na pumps. Chronic angiotensin II (ANG II) infusion increases net TAL Na transport and Na apical entry; however, little is known about its effects on the basolateral Na pump. We hypothesized that in rat TALs Na pump activity is enhanced by ANG II-infusion, a model of ANG II-induced hypertension. Rats were infused with 200 ng·kg−1·min−1 ANG II or vehicle for 7 days, and TAL suspensions were obtained. We studied plasma membrane Na pump activity by measuring changes in 1) intracellular Na (Nai) induced by ouabain; and 2) ouabain-sensitive oxygen consumption (QO2). We found that the ouabain-sensitive rise in Nai in TALs from ANG II-infused rats was 12.8 ± 0.4 arbitrary fluorescent units (AFU)·mg−1·min−1 compared with only 9.9 ± 1.1 AFU·mg−1·min−1 in controls ( P < 0.024). Ouabain-sensitive oxygen consumption was 17 ± 5% ( P < 0.043) greater in tubules from ANG II-treated than vehicle rats. ANG II infusion did not alter total Na pump expression, the number of Na pumps in the plasma membrane, or the affinity for Na. When furosemide (1.1 mg·kg−1·day−1) was coinfused with ANG II, no increase in plasma membrane Na pump activity was observed. We concluded that in ANG II-induced hypertension Na pump activity is increased in the plasma membrane of TALs and that this increase is caused by the chronically enhanced Na entry occurring in this model.


2011 ◽  
Vol 39 (02) ◽  
pp. 381-394 ◽  
Author(s):  
Paul Chan ◽  
Ju-Chi Liu ◽  
Li-Jen Lin ◽  
Po-Yuan Chen ◽  
Tzu-Hurng Cheng ◽  
...  

Tanshinone IIA extracted from Danshen, a popular medicinal herb used in traditional Chinese medicine, exhibits cardio-protective effects. However, the mechanism of its cardioprotective effect is not well established. The aims of this study were to examine whether tanshinone IIA may alter angiotensin II (Ang II)-induced cell proliferation and to identify the putative underlying signaling pathways in rat cardiac fibroblasts. Cultured rat cardiac fibroblasts were pre-treated with tanshinone IIA and stimulated with Ang II, cell proliferation and endothelin-1 (ET-1) expression were examined. The effect of tanshinone IIA on Ang II-induced reactive oxygen species (ROS) formation, and extracellular signal-regulated kinase (ERK) phosphorylation were also examined. In addition, the effect of tanshinone IIA on nitric oxide (NO) production, and endothelial nitric oxide synthase (eNOS) phosphorylation were tested to elucidate the intracellular mechanism. The increased cell proliferation and ET-1 expression by Ang II (100 nM) were partially inhibited by tanshinone IIA. Tanshinone IIA also inhibited Ang II-increased ROS formation, and ERK phosphorylation. In addition, tanshinone IIA was found to increase the NO generation, and eNOS phosphorylation. NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOS, and the short interfering RNA transfection for eNOS markedly attenuated the inhibitory effect of tanshinone IIA on Ang II-induced cell proliferation. The results suggest that tanshinone IIA prevents cardiac fibroblast proliferation by interfering with the generation of ROS and involves the activation of the eNOS-NO pathway.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Daniel J Fehrenbach ◽  
Meena S Madhur

Hypertension, or an elevated blood pressure, is the primary modifiable risk factor for cardiovascular disease, the number one cause of mortality worldwide. We previously demonstrated that Th17 activation and interleukin 17A (IL-17A)/IL-21 production is integral for the full development of a hypertensive phenotype as well as the renal and vascular damage associated with hypertension. Rho-associated coiled-coil containing protein Kinase 2 (ROCK2) serves as a molecular switch upregulating Th17 and inhibiting regulatory T cell (Treg) differentiation. We hypothesize that hypertension is characterized by excessive T cell ROCK2 activation leading to increased Th17/Treg ratios and ultimately end-organ damage. We first showed in vitro that KD025, an experimental orally bioavailable ROCK2 inhibitor inhibits Th17 cell proliferation and IL-17A/IL-21 production. To determine if hypertensive stimuli such as endothelial stretch increases T cell ROCK2 expression, we cultured human aortic endothelial cells exposed to 5% (normotensive) or 10% (hypertensive) stretch with circulating human T cells and HLA-DR+ antigen presenting cells. Hypertensive stretch increased T cell ROCK2 expression 2-fold. We then tested the effect of ROCK2 inhibition with KD025 (50mg/kg i.p. daily) in vivo on angiotensin II (Ang II)-induced hypertension. Treatment with KD025 significantly attenuated the hypertensive response within 1 week of Ang II treatment (systolic blood pressure: 139± 8 vs 108±7mmHg) and this persisted for the duration of the 4 week study reaching blood pressures 20 mmHg lower (135±13mmHg) than vehicle treated mice (158±4mmHg p<0.05 effect of treatment 2-way Repeated Measures ANOVA). Flow cytometric analysis of tissue infiltrating leukocytes revealed that KD025 treatment increased Treg/Th17 ratios in the kidney (0.61±0.03 vs 0.79±0.08, p<0.05 student’s t-test). Thus, T cell ROCK2 may be a novel therapeutic target for the treatment of hypertension.


2014 ◽  
Vol 307 (5) ◽  
pp. H803-H809 ◽  
Author(s):  
Kelly A. Hyndman ◽  
Dao H. Ho ◽  
Martiana F. Sega ◽  
Jennifer S. Pollock

The lysine acetylation state of nonhistone proteins may be regulated through histone deacetylases (HDACs). Evidence suggests that nitric oxide (NO) synthase 3 (NOS3; endothelial NOS) is posttranslationally lysine acetylated, leading to increased NO production in the endothelium. We tested the hypothesis that NOS3 is lysine acetylated and that upregulated HDAC1-mediated deacetylation leads to reduced NO production in endothelial cells. We determined that NOS3 is basally lysine acetylated in cultured bovine aortic endothelial cells (BAECs). In BAECs, HDAC1 is expressed in the nucleus and cytosol and forms a novel protein-protein interaction with NOS3. Overexpression of HDAC1 in BAECs resulted in a significant reduction in NOS3 lysine acetylation (control = 1.0 ± 0.1 and HDAC1 = 0.59 ± 0.08 arbitrary units, P < 0.01) and significantly blunted basal nitrite production (control 287.7 ± 29.1 and HDAC1 172.4 ± 31.7 pmol·mg−1·h−1, P < 0.05) as well as attenuating endothelin-1-stimulated nitrite production (control = 481.8 ± 50.3 and HDAC1 243.1 ± 48.2 pmol·mg−1·h−1, P < 0.05). While HDAC1 knockdown with small-interfering RNA resulted in no change in NOS3 acetylation level, yet increased basal nitrite production (730.6 ± 99.1 pmol·mg−1·h−1) and further exaggerated increases in endothelin-1 stimulated nitrite production (1276.9 ± 288.2 pmol·mg−1·h−1) was observed. Moreover, overexpression or knockdown of HDAC1 resulted in no significant effect on NOS3 protein expression or NOS3 phosphorylation sites T497, S635, or S1179. Thus these data indicate that upregulated HDAC1 decreases NOS3 activity, most likely through direct lysine deacetylation of NOS3. We propose that HDAC1-mediated deacetylation of NOS3 may represent a novel target for endothelial dysfunction.


Author(s):  
Xiao Chun Li ◽  
Ana Paula Oliveira Leite ◽  
Xiaowen Zheng ◽  
Chunling Zhao ◽  
Xu Chen ◽  
...  

The present study used a novel mouse model with proximal tubule-specific knockout of AT 1a receptors in the kidney, PT- Agtr1a −/− , to test the hypothesis that intratubular Ang II (angiotensin II) and AT 1a receptors in the proximal tubules are required for maintaining normal blood pressure and the development of Ang II–induced hypertension. Twenty-six groups (n=6–15 per group) of adult male wild-type, global Agtr1a −/− , and PT- Agtr1a −/− mice were infused with Ang II (1.5 mg/kg per day, IP), or overexpressed an intracellular Ang II fusion protein in the proximal tubules for 2 weeks. Basal telemetry blood pressure were ≈15±3 mm Hg lower in PT- Agtr1a −/− than wild-type mice and ≈13±3 mm Hg higher than Agtr1a −/− mice ( P <0.01). Basal glomerular filtration was ≈23.9% higher ( P <0.01), whereas fractional proximal tubule Na + reabsorption was lower in PT- Agtr1a −/− mice ( P <0.01). Deletion of AT 1a receptors in the proximal tubules augmented the pressure-natriuresis response ( P <0.01) and natriuretic responses to salt loading or Ang III infusion ( P <0.01). Ang II induced hypertension in wild-type, PT- Agtr1a −/− and PT- Nhe3 −/− mice, but the pressor response was ≈16±2 mm Hg lower in PT- Agtr1a −/− and PT- Nhe3 −/− mice ( P <0.01). Deletion of AT 1a receptors or NHE3 (Na + /H + exchanger 3) in the proximal tubules attenuated ≈50% of Ang II–induced hypertension in wild-type mice ( P <0.01), but blocked intracellular Ang II fusion protein-induced hypertension in PT- Agtr1a −/− mice ( P <0.01). Taken together, the results of the present study provide new insights into the critical role of intratubular Ang II/AT 1 (AT 1a )/NHE3 pathways in the proximal tubules in normal blood pressure control and the development of Ang II–induced hypertension.


2005 ◽  
Vol 23 (3) ◽  
pp. 257-268 ◽  
Author(s):  
Victoria L. M. Herrera ◽  
Lorenz R. B. Ponce ◽  
Pia D. Bagamasbad ◽  
Benjamin D. VanPelt ◽  
Tamara Didishvili ◽  
...  

The dual endothelin-1/angiotensin II receptor (Dear) binds endothelin-1 (ET-1) and angiotensin II (ANG II) with equal affinities in the Dahl S/JRHS rat strain. To elucidate its physiological significance within the context of multiple receptor isoforms and diverse ET-1 and ANG II functions spanning blood pressure regulation, tumor proliferation, and angiogenesis, we characterized mouse Dear and Dear-deficient mice. Unlike null mutant models of ET-1, ANG II, and all other ET-1 and ANG II receptors, Dear−/− deficiency results in impaired angiogenesis, dysregulated neuroepithelial development, and embryonic lethality by embryonic day 12.5. Interestingly, mouse Dear does not bind ANG II, similar to Dahl R/JRHS rat Dear, but binds ET-1 and vascular endothelial growth factor (VEGF) signal peptide (VEGFsp) with equal affinities, suggesting a putative novel multifunction for VEGFsp and a parsimonious mechanism for coordination of VEGF-induced and Dear-mediated pathways. Consistent with its developmental angiogenic role, Dear inhibition results in decreased tumor growth in B16-F10 melanoma cell-induced subcutaneous tumor in female Dear+/−/C57BL6BC10 mice, but not in males (age 3.5 mo), and in 127Cs radiation-induced orthotopic mammary tumors in Sprague-Dawley female rats (age range 3–6.5 mo). Altogether, the data identify Dear as a new player in angiogenesis during development downstream to, and nonredundant with, VEGF-mediated pathways, as well as a putative modulator of tumor angiogenesis acting within a gender-specific paradigm.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Shetal H Padia ◽  
Nancy L Howell ◽  
Brandon A Kemp ◽  
John J Gildea ◽  
Susanna R Keller ◽  
...  

A major proposed mechanism for the initiation of hypertension involves a primary increase in renal tubular sodium (Na+) reabsorption. Activation of intrarenal angiotensin type-2 receptors (AT2R) increases Na+ excretion; however, the role of intrarenal angiotensin type-2 receptors (AT2R) in the development of hypertension is unknown. Sprague-Dawley rats (N=36) underwent uninephrectomy and telemetric blood pressure probe implantation. Following a 72h recovery, two osmotic minipumps were inserted in each rat, one for chronic systemic delivery of 5% dextrose in water (D5W) or angiotensin II (Ang II, 200 ng/kg/min), and one for chronic intrarenal delivery of D5W (0.25 μL/h x 7d), highly selective AT2R agonist Compound 21 (C-21; 60 ng/kg/min x 7d), or specific AT2R antagonist PD-1223319 (PD; 10 ng/kg/min x 7d). Five groups of rats were studied: Group 1 (Control; N=10): systemic D5W + intrarenal D5W; Group 2 (Ang II-induced hypertension; N=8): systemic Ang II + intrarenal D5W; Group 3 (N=6): systemic Ang II + intrarenal C-21; Group 4 (N=6): systemic Ang II + 48h lead-in intrarenal C-21; Group 5 (N=6): systemic Ang II + intrarenal PD. Systemic Ang II infusion increased mean systolic blood pressure from 126±5 to 190±3 mm Hg over a 7d period in Group 2 (ANOVA F=73; P<1 X 10-6). Intrarenal administration of AT2R agonist C-21 (Groups 3 and 4) markedly inhibited the pressor effect of systemic Ang II (P<0.0001). Intrarenal AT2R antagonist PD (Group 5) augmented the pressor action of Ang II (P<0.0001). Consecutive 24h urinary Na+ excretion (UNaV) was reduced from 0.95±0.04 to 0.34±0.07 μmol/min (P<0.0001) on day 1 of Ang II infusion; Ang II-induced antinatriuresis was inhibited by intrarenal C-21 (P<0.0001) and augmented by intrarenal PD (P<0.0001) during the entire 7d infusion, demonstrating that one of the mechanisms to prevent Ang II-induced hypertension during intrarenal AT2R activation is the abolition of the initial increase in Na+ reabsorption that triggers the hypertensive cascade in this model. Thus, renal AT2Rs represent a novel therapeutic target for the prevention of hypertension.


Sign in / Sign up

Export Citation Format

Share Document