Protective role for CCR5 in murine lupus nephritis

2012 ◽  
Vol 302 (11) ◽  
pp. F1503-F1515 ◽  
Author(s):  
Jan-Eric Turner ◽  
Hans-Joachim Paust ◽  
Sabrina B. Bennstein ◽  
Phillip Bramke ◽  
Christian Krebs ◽  
...  

Leukocyte infiltration is a characteristic feature of human and experimental lupus nephritis and is closely correlated with loss of renal function. The chemokine receptor CCR5 is expressed on monocyte and T cell subsets and is thought to play an important role in recruiting these cells into inflamed organs. To investigate the functional role of CCR5 in lupus nephritis, CCR5-deficient mice were backcrossed onto the lupus-prone MRL- Faslpr (MRL/lpr) genetic background. Unexpectedly, CCR5−/− MRL/lpr mice developed an aggravated course of lupus nephritis in terms of glomerular tissue injury and albuminuria. Deterioration of the nephritis was associated with an overall increase in mononuclear cell infiltration into the kidney, whereas renal leukocyte subtype balance, systemic T cell response, and autoantibody formation were unaffected by CCR5 deficiency. Renal and systemic protein levels of the CCR5 ligand CCL3, which can also attract leukocytes via its alternate receptor CCR1, were significantly increased in nephritic CCR5−/− MRL/lpr mice. Further studies revealed that the systemic increase in the CCR5/CCR1 ligand is also observed in nonimmune CCR5−/− C57BL/6 mice and that this increase was due to a reduced clearance, rather than an overproduction, of CCL3. Taken together, our data support the hypothesis that CCR5-dependent consumption of its own ligands may act as a negative feedback loop to restrain local chemokine levels within inflamed tissues, thereby limiting inflammatory cell influx.

Author(s):  
Kristen Orumaa ◽  
Margaret R. Dunne

AbstractCOVID-19 is a respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was first documented in late 2019, but within months, a worldwide pandemic was declared due to the easily transmissible nature of the virus. Research to date on the immune response to SARS-CoV-2 has focused largely on conventional B and T lymphocytes. This review examines the emerging role of unconventional T cell subsets, including γδ T cells, invariant natural killer T (iNKT) cells and mucosal associated invariant T (MAIT) cells in human SARS-CoV-2 infection.Some of these T cell subsets have been shown to play protective roles in anti-viral immunity by suppressing viral replication and opsonising virions of SARS-CoV. Here, we explore whether unconventional T cells play a protective role in SARS-CoV-2 infection as well. Unconventional T cells are already under investigation as cell-based immunotherapies for cancer. We discuss the potential use of these cells as therapeutic agents in the COVID-19 setting. Due to the rapidly evolving situation presented by COVID-19, there is an urgent need to understand the pathogenesis of this disease and the mechanisms underlying its immune response. Through this, we may be able to better help those with severe cases and lower the mortality rate by devising more effective vaccines and novel treatment strategies.


Author(s):  
Moritz Anft ◽  
Krystallenia Paniskaki ◽  
Arturo Blazquez-Navarro ◽  
Adrian Doevelaar ◽  
Felix S. Seibert ◽  
...  

AbstractBackgroundThe efficacy of the humoral and cellular immunity determines the outcome of viral infections. An appropriate immune response mediates protection, whereas an overwhelming immune response has been associated with immune-mediated pathogenesis in viral infections. The current study explored the general and SARS-CoV-2 specific cellular and humoral immune status in patients with different COVID-19 severities.MethodsIn this prospective study, we included 53 patients with moderate, severe, and critical COVID-19 manifestations comparing their quantitative, phenotypic, and functional characteristics of circulating immune cells, SARS-CoV-2 antigen specific T-cells, and humoral immunity.ResultsSignificantly diminished frequencies of CD8+T-cells, CD4+ and CD8+T-cell subsets with activated differentiated memory/effector phenotype and migratory capacity were found in circulation in patients with severe and/or critical COVID-19 as compared to patients with moderate disease. Importantly, the improvement of the clinical courses from severe to moderate was accompanied by an improvement in the T-cell subset alterations. Furthermore, we surprisingly observed a detectable SARS-CoV-2-reactive T-cell response in all three groups after stimulation with SARS-CoV-2 S-protein overlapping peptide pool already at the first visit. Of note, patients with a critical COVID-19 demonstrated a stronger response of SARS-CoV-2-reactive T-cells producing Th1 associated inflammatory cytokines. Furthermore, clear correlation between antibody titers and SARS-CoV-2-reactive CD4+ frequencies underscore the role of specific immunity in disease progression.ConclusionOur data demonstrate that depletion of activated memory phenotype circulating T-cells and a strong SARS-CoV-2-specific cellular and humoral immunity are associated with COVID-19 disease severity. This counter-intuitive finding may have important implications for diagnostic, therapeutic and prophylactic COVID-19 management.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Sagar Gaikwad ◽  
Reena Agrawal-Rajput

Microglia activation and neuroinflammation are key events during the progression of neurodegenerative disorders. Microglia exhibits toll-like receptors (TLRs), with predominant expression of TLR4, inducing aberrant neuroinflammation and exacerbated neurotoxicity. Studies suggest that microglia initiate infiltration of T cells into the brain that critically influence disease conditions. We report that LPS-Rs, through TLR4 antagonism, significantly inhibit TLR4 mediated inflammatory molecules like IL-1β, IL-6, TNF-α, COX-2, iNOS, and NO. LPS-Rs regulates JNK/p38 MAPKs and p65-NF-κB signaling pathways, which we report as indispensible for LPS induced neuroinflammation. LPS-Rs mitigates microglial phagocytic activity and we are first to report regulatory role of LPS-Rs which blocked microglia mediated inflammation and apoptotic cell death. LPS-Rs significantly inhibits expression of costimulatory molecules CD80, CD86, and CD40. Chemokine receptor, CCR5, and T cell recruitment chemokines, MIP-1αand CCL5, were negatively regulated by LPS-Rs. Furthermore, LPS-Rs significantly inhibited lymphocyte proliferation with skewed regulatory T (Treg) cell response as evidenced by increased FOXP3, IL-10, and TGF-β. Additionally, LPS-Rs serves to induce coordinated immunosuppressive response and confer tolerogenic potential to activated microglia extending neurosupportive microenvironment. TLR4 antagonism can be a strategy providing neuroprotection through regulation of microglia as well as the T cells.


Lupus ◽  
2019 ◽  
Vol 28 (12) ◽  
pp. 1468-1472 ◽  
Author(s):  
N Yoshida ◽  
F He ◽  
V C Kyttaris

Signal transducer and activator of transcription (STAT) 3 is a regulator of T-cell responses to external stimuli, such as pro-inflammatory cytokines and chemokines. We have previously shown that STAT3 is activated (phosphorylated) at high levels in systemic lupus erythematosus (SLE) T cells and mediates chemokine-induced migration and T:B cell interactions. Stattic, a small molecular STAT3 inhibitor, can partially ameliorate lupus nephritis in mice. To understand the role of STAT3 better in T-cell pathophysiology in lupus nephritis and its potential as a treatment target, we silenced its expression in T cells using a cd4-driven CRE-Flox model. We found that lupus-prone mice that do not express STAT3 in T cells did not develop lymphadenopathy, splenomegaly, or glomerulonephritis. Moreover, the production of anti-dsDNA antibodies was decreased in these mice compared to controls. To dissect the mechanism, we also used a nephrotoxic serum model of nephritis. In this model, T cell–specific silencing of STAT3 resulted in amelioration of nephrotoxic serum-induced kidney damage. Taken together, our results suggest that in mouse models of autoimmune nephritis, T cell–specific silencing of STAT3 can hamper their ability to help B cells to produce autoantibodies and induce cell tissue infiltration. We propose that STAT3 inhibition in T cells represents a novel approach in the treatment of SLE and lupus nephritis in particular.


2012 ◽  
Vol 189 (8) ◽  
pp. 3905-3913 ◽  
Author(s):  
Susanna Choi ◽  
Hang-Rae Kim ◽  
Lin Leng ◽  
Insoo Kang ◽  
William L. Jorgensen ◽  
...  

1999 ◽  
Vol 6 (s1) ◽  
pp. 36-40 ◽  
Author(s):  
G. R. Pape ◽  
T. J. Gerlach ◽  
H. M. Diepolder ◽  
N. Grüner ◽  
M.‐C. Jung ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Ming Liu ◽  
Zikun Xie ◽  
Guang Sun ◽  
Liujun Chen ◽  
Dake Qi ◽  
...  

Abstract Background Osteoarthritis (OA) is the most prevalent form of arthritis and the major cause of disability and overall diminution of quality of life in the elderly population. Currently there is no cure for OA, partly due to the large gaps in our understanding of its underlying molecular and cellular mechanisms. Macrophage migration inhibitory factor (MIF) is a procytokine that mediates pleiotropic inflammatory effects in inflammatory diseases such as rheumatoid arthritis (RA) and ankylosing spondylitis (AS). However, data on the role of MIF in OA is limited with conflicting results. We undertook this study to investigate the role of MIF in OA by examining MIF genotype, mRNA expression, and protein levels in the Newfoundland Osteoarthritis Study. Methods One hundred nineteen end-stage knee/hip OA patients, 16 RA patients, and 113 healthy controls were included in the study. Two polymorphisms in the MIF gene, rs755622, and -794 CATT5-8, were genotyped using polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) and PCR followed by automated capillary electrophoresis, respectively. MIF mRNA levels in articular cartilage and subchondral bone were measured by quantitative polymerase chain reaction. Plasma concentrations of MIF, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) were measured by enzyme-linked immunosorbent assay. Results rs755622 and -794 CATT5-8 genotypes were not associated with MIF mRNA or protein levels or OA (all p ≥ 0.19). MIF mRNA level in cartilage was lower in OA patients than in controls (p = 0.028) and RA patients (p = 0.004), while the levels in bone were comparable between OA patients and controls (p = 0.165). MIF protein level in plasma was lower in OA patients than in controls (p = 3.01 × 10−10), while the levels of TNF-α, IL-6 and IL-1β in plasma were all significantly higher in OA patients than in controls (all p ≤ 0.0007). Multivariable logistic regression showed lower MIF and higher IL-1β protein levels in plasma were independently associated with OA (OR per SD increase = 0.10 and 8.08; 95% CI = 0.04–0.19 and 4.42–16.82, respectively), but TNF-α and IL-6 became non-significant. Conclusions Reduced MIF mRNA and protein expression in OA patients suggested MIF might have a protective role in OA and could serve as a biomarker to differentiate OA from other joint disorders.


1995 ◽  
Vol 7 (7) ◽  
pp. 1115-1123 ◽  
Author(s):  
Hiroyuki Nishimura ◽  
Susumu Hattori ◽  
Genjiro Ueda ◽  
Masaaki Abe ◽  
Kwangseok Yang ◽  
...  

2017 ◽  
Vol 85 (11) ◽  
Author(s):  
Rajamanickam Anuradha ◽  
Saravanan Munisankar ◽  
Yukthi Bhootra ◽  
Chandrakumar Dolla ◽  
Paul Kumaran ◽  
...  

ABSTRACT Strongyloides stercoralis infection is associated with diminished antigen-specific Th1- and Th17-associated responses and enhanced Th2-associated responses. Interleukin-27 (IL-27) and IL-37 are two known anti-inflammatory cytokines that are highly expressed in S. stercoralis infection. We therefore wanted to examine the role of IL-27 and IL-37 in regulating CD4+ and CD8+ T cell responses in S. stercoralis infection. To this end, we examined the frequency of Th1/Tc1, Th2/Tc2, Th9/Tc9, Th17/Tc17, and Th22/Tc22 cells in 15 S. stercoralis-infected individuals and 10 uninfected individuals stimulated with parasite antigen following IL-27 or IL-37 neutralization. We also examined the production of prototypical type 1, type 2, type 9, type 17, and type 22 cytokines in the whole-blood supernatants. Our data reveal that IL-27 or IL-37 neutralization resulted in significantly enhanced frequencies of Th1/Tc1, Th2/Tc2, Th17/Tc17, Th9, and Th22 cells with parasite antigen stimulation. There was no induction of any T cell response in uninfected individuals following parasite antigen stimulation and IL-27 or IL-37 neutralization. Moreover, we also observed increased production of gamma interferon (IFN-γ), IL-5, IL-9, IL-17, and IL-22 and decreased production of IL-10 following IL-27 and IL-37 neutralization and parasite antigen stimulation in whole-blood cultures. Thus, we demonstrate that IL-27 and IL-37 limit the induction of particular T cell subsets along with cytokine responses in S. stercoralis infections, which suggest the importance of IL-27 and IL-37 in immune modulation in a chronic helminth infection.


Sign in / Sign up

Export Citation Format

Share Document