scholarly journals Lipopolysaccharide fromRhodobacter sphaeroidesAttenuates Microglia-Mediated Inflammation and Phagocytosis and Directs Regulatory T Cell Response

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Sagar Gaikwad ◽  
Reena Agrawal-Rajput

Microglia activation and neuroinflammation are key events during the progression of neurodegenerative disorders. Microglia exhibits toll-like receptors (TLRs), with predominant expression of TLR4, inducing aberrant neuroinflammation and exacerbated neurotoxicity. Studies suggest that microglia initiate infiltration of T cells into the brain that critically influence disease conditions. We report that LPS-Rs, through TLR4 antagonism, significantly inhibit TLR4 mediated inflammatory molecules like IL-1β, IL-6, TNF-α, COX-2, iNOS, and NO. LPS-Rs regulates JNK/p38 MAPKs and p65-NF-κB signaling pathways, which we report as indispensible for LPS induced neuroinflammation. LPS-Rs mitigates microglial phagocytic activity and we are first to report regulatory role of LPS-Rs which blocked microglia mediated inflammation and apoptotic cell death. LPS-Rs significantly inhibits expression of costimulatory molecules CD80, CD86, and CD40. Chemokine receptor, CCR5, and T cell recruitment chemokines, MIP-1αand CCL5, were negatively regulated by LPS-Rs. Furthermore, LPS-Rs significantly inhibited lymphocyte proliferation with skewed regulatory T (Treg) cell response as evidenced by increased FOXP3, IL-10, and TGF-β. Additionally, LPS-Rs serves to induce coordinated immunosuppressive response and confer tolerogenic potential to activated microglia extending neurosupportive microenvironment. TLR4 antagonism can be a strategy providing neuroprotection through regulation of microglia as well as the T cells.

2008 ◽  
Vol 83 (4) ◽  
pp. 1625-1634 ◽  
Author(s):  
Shenghua Zhou ◽  
Evelyn A. Kurt-Jones ◽  
Anna M. Cerny ◽  
Melvin Chan ◽  
Roderick Terry Bronson ◽  
...  

ABSTRACT Myeloid differentiation factor 88 (MyD88) is an essential adaptor protein in the Toll-like receptor-mediated innate signaling pathway, as well as in interleukin-1 receptor (IL-1R) and IL-18R signaling. The importance of MyD88 in the regulation of innate immunity to microbial pathogens has been well demonstrated. However, its role in regulating acquired immunity to viral pathogens and neuropathogenesis is not entirely clear. In the present study, we examine the role of MyD88 in the CD4+ T-cell response following lymphocytic choriomeningitis virus (LCMV) infection. We demonstrate that wild-type (WT) mice developed a CD4+ T-cell-mediated wasting disease after intracranial infection with LCMV. In contrast, MyD88 knockout (KO) mice did not develop wasting disease in response to the same infection. This effect was not the result of MyD88 regulation of IL-1 or IL-18 responses since IL-1R1 KO and IL-18R KO mice were not protected from weight loss. In the absence of MyD88, naïve CD4+ T cells failed to differentiate to LCMV-specific CD4 T cells. We demonstrated that MyD88 KO antigen-presenting cells are capable of activating WT CD4+ T cells. Importantly, when MyD88 KO CD4+ T cells were reconstituted with an MyD88-expressing lentivirus, the rescued CD4+ T cells were able to respond to LCMV infection and support IgG2a antibody production. Overall, these studies reveal a previously unknown role of MyD88-dependent signaling in CD4+ T cells in the regulation of the virus-specific CD4+ T-cell response and in viral infection-induced immunopathology in the central nervous system.


2002 ◽  
Vol 195 (11) ◽  
pp. 1463-1470 ◽  
Author(s):  
Imtiaz A. Khan ◽  
Magali Moretto ◽  
Xiao-qing Wei ◽  
Martha Williams ◽  
Joseph D. Schwartzman ◽  
...  

Interferon (IFN)-γ–producing CD8+ T cells are important for the successful resolution of the obligate intracellular parasite Toxoplasma gondii by preventing the reactivation or controlling a repeat infection. Previous reports from our laboratory have shown that exogenous interleukin (IL)-15 treatment augments the CD8+ T cell response against the parasite. However, the role of endogenous IL-15 in the proliferation of activated/memory CD8+ T cells during toxoplasma or any other infection is unknown. In this study, we treated T. gondii immune mice with soluble IL-15 receptor α (sIL-15Rα) to block the host endogenous IL-15. The treatment markedly reduced the ability of the immune animals to control a lethal infection. CD8+ T cell activities in the sIL-15Rα–administered mice were severely reduced as determined by IFN-γ release and target cell lysis assays. The loss of CD8+ T cell immunity due to sIL-15Rα treatment was further demonstrated by adoptive transfer experiments. Naive recipients transferred with CD44hi activated/memory CD8+ T cells and treated with sIL-15Rα failed to resist a lethal T. gondii infection. Moreover, sIL-15Rα treatment of the recipients blocked the ability of donor CD44hi activated/memory CD8+ T cells to replicate in response to T. gondii challenge. To our knowledge, this is the first demonstration of the important role of host IL-15 in the development of antigen-specific memory CD8+ T cells against an intracellular infection.


2021 ◽  
Author(s):  
Roshni Roy Chowdhury ◽  
John R Valainis ◽  
Oliver Kask ◽  
Mane Ohanyan ◽  
Meng Sun ◽  
...  

γδ T cells contribute to host immune defense uniquely; but how they function in different stages (e.g., acute versus chronic) of a specific infection remains unclear. As the role of γδ T cells in early, active Mycobacterium tuberculosis (Mtb) infection is well documented, we focused on elucidating the γδ T cell response in persistent or controlled Mtb infection. Systems analysis of circulating gd T cells from a South African adolescent cohort identified a distinct population of CD8+ γδ T cells that expanded in this state. These cells had features indicative of persistent antigenic exposure but were robust cytolytic effectors and cytokine/chemokine producers. While these γδ T cells displayed an attenuated response to TCR-mediated stimulation, they expressed Natural Killer (NK) cell receptors and had robust CD16 (FcgRIIIA)-mediated cytotoxic response, suggesting alternative ways for gd T cells to control this stage of the infection. Despite this NK-like functionality, the CD8+ γδ T cells consisted of highly expanded clones, which utilized TCRs with different Vg/d pairs. Theses TCRs could respond to an Mtb-lysate, but not to phosphoantigens, which are components of Mtb-lysate that activate gd T cells in acute Mtb infection, indicating that the CD8+ γδ T cells were induced in a stage-specific, antigen-driven manner. Indeed, trajectory analysis showed that these γδ T cells arose from naive cells that had traversed distinct differentiation paths in this infection stage. Importantly, increased levels of CD8+ γδ T cells were also found in other chronic inflammatory conditions, including cardiovascular disease and cancer, suggesting that persistent antigenic exposure may lead to similar γδ T cell responses.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1716
Author(s):  
Anwesha Kar ◽  
Shikhar Mehrotra ◽  
Shilpak Chatterjee

Activation and subsequent differentiation of T cells following antigenic stimulation are triggered by highly coordinated signaling events that lead to instilling cells with a discrete metabolic and transcriptional feature. Compelling studies indicate that intracellular nicotinamide adenine dinucleotide (NAD+) levels have profound influence on diverse signaling and metabolic pathways of T cells, and hence dictate their functional fate. CD38, a major mammalian NAD+ glycohydrolase (NADase), expresses on T cells following activation and appears to be an essential modulator of intracellular NAD+ levels. The enzymatic activity of CD38 in the process of generating the second messenger cADPR utilizes intracellular NAD+, and thus limits its availability to different NAD+ consuming enzymes (PARP, ART, and sirtuins) inside the cells. The present review discusses how the CD38-NAD+ axis affects T cell activation and differentiation through interfering with their signaling and metabolic processes. We also describe the pivotal role of the CD38-NAD+ axis in influencing the chromatin remodeling and rewiring T cell response. Overall, this review emphasizes the crucial contribution of the CD38−NAD+ axis in altering T cell response in various pathophysiological conditions.


2021 ◽  
Vol 218 (4) ◽  
Author(s):  
Zhen Zhuang ◽  
Xiaomin Lai ◽  
Jing Sun ◽  
Zhao Chen ◽  
Zhaoyong Zhang ◽  
...  

Virus-specific T cells play essential roles in protection against multiple virus infections, including SARS-CoV and MERS-CoV. While SARS-CoV-2–specific T cells have been identified in COVID-19 patients, their role in the protection of SARS-CoV-2–infected mice is not established. Here, using mice sensitized for infection with SARS-CoV-2 by transduction with an adenovirus expressing the human receptor (Ad5-hACE2), we identified SARS-CoV-2–specific T cell epitopes recognized by CD4+ and CD8+ T cells in BALB/c and C57BL/6 mice. Virus-specific T cells were polyfunctional and were able to lyse target cells in vivo. Further, type I interferon pathway was proved to be critical for generating optimal antiviral T cell responses after SARS-CoV-2 infection. T cell vaccination alone partially protected SARS-CoV-2–infected mice from severe disease. In addition, the results demonstrated cross-reactive T cell responses between SARS-CoV and SARS-CoV-2, but not MERS-CoV, in mice. Understanding the role of the T cell response will guide immunopathogenesis studies of COVID-19 and vaccine design and validation.


2007 ◽  
Vol 15 (5) ◽  
pp. 997-1006 ◽  
Author(s):  
Teng Chih Yang ◽  
James Millar ◽  
Timothy Groves ◽  
Wenzhong Zhou ◽  
Natalie Grinshtein ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amanda W. K. AuYeung ◽  
Robert C. Mould ◽  
Ashley A. Stegelmeier ◽  
Jacob P. van Vloten ◽  
Khalil Karimi ◽  
...  

AbstractVaccination can prevent viral infections via virus-specific T cells, among other mechanisms. A goal of oncolytic virotherapy is replication of oncolytic viruses (OVs) in tumors, so pre-existing T cell immunity against an OV-encoded transgene would seem counterproductive. We developed a treatment for melanomas by pre-vaccinating against an oncolytic vesicular stomatitis virus (VSV)-encoded tumor antigen. Surprisingly, when the VSV-vectored booster vaccine was administered at the peak of the primary effector T cell response, oncolysis was not abrogated. We sought to determine how oncolysis was retained during a robust T cell response against the VSV-encoded transgene product. A murine melanoma model was used to identify two mechanisms that enable this phenomenon. First, tumor-infiltrating T cells had reduced cytopathic potential due to immunosuppression. Second, virus-induced lymphopenia acutely removed virus-specific T cells from tumors. These mechanisms provide a window of opportunity for replication of oncolytic VSV and rationale for a paradigm change in oncolytic virotherapy, whereby immune responses could be intentionally induced against a VSV-encoded melanoma-associated antigen to improve safety without abrogating oncolysis.


2016 ◽  
Vol 90 (10) ◽  
pp. 5187-5199 ◽  
Author(s):  
Qingsong Qin ◽  
Shwetank ◽  
Elizabeth L. Frost ◽  
Saumya Maru ◽  
Aron E. Lukacher

ABSTRACTMouse polyomavirus (MPyV) is a ubiquitous persistent natural mouse pathogen. A glutamic acid (E)-to-glycine (G) difference at position 91 of the VP1 capsid protein shifts the profile of tumors induced by MPyV from an epithelial to a mesenchymal cell origin. Here we asked if this tropism difference affects the MPyV-specific CD8 T cell response, which controls MPyV infection and tumorigenesis. Infection by the laboratory MPyV strain RA (VP1-91G) or a strain A2 mutant with an E-to-G substitution at VP1 residue 91 [A2(91G)] generated a markedly smaller virus-specific CD8 T cell response than that induced by A2(VP1-91E) infection. Mutant A2(91G)-infected mice showed a higher frequency of memory precursor (CD127hiKLRG1lo) CD8 T cells and a higher recall response than those of A2-infected mice. Using T cell receptor (TCR)-transgenic CD8 T cells and immunization with peptide-pulsed dendritic cells, we found that early bystander inflammation associated with A2 infection contributed to recruitment of the larger MPyV-specific CD8 T cell response. Beta interferon (IFN-β) transcripts were induced early during A2 or A2(91G) infections. IFN-β inhibited replication of A2 and A2(91G)in vitro. Using mice lacking IFN-αβ receptors (IFNAR−/−), we showed that type I IFNs played a role in controlling MPyV replicationin vivobut differentially affected the magnitude and functionality of virus-specific CD8 T cells recruited by A2 and A2(91G) viral infections. These data indicate that type I IFNs are involved in protection against MPyV infection and that their effect on the antiviral CD8 T cell response depends on capsid-mediated tropism properties of the MPyV strain.IMPORTANCEIsolates of the human polyomavirus JC virus from patients with the frequently fatal demyelinating brain disease progressive multifocal leukoencephalopathy (PML) carry single amino acid substitutions in the domain of the VP1 capsid protein that binds the sialic acid moiety of glycoprotein/glycolipid receptors on host cells. These VP1 mutations may alter neural cell tropism or enable escape from neutralizing antibodies. Changes in host cell tropism can affect recruitment of virus-specific CD8 T cells. Using mouse polyomavirus, we demonstrate that a single amino acid difference in VP1 known to shift viral tropism profoundly affects the quantity and quality of the anti-polyomavirus CD8 T cell response and its differentiation into memory cells. These findings raise the possibility that CD8 T cell responses to infections by human polyomaviruses may be influenced by VP1 mutations involving domains that engage host cell receptors.


2014 ◽  
Vol 20 (10) ◽  
pp. 1312-1321 ◽  
Author(s):  
Jyothi T Mony ◽  
Reza Khorooshi ◽  
Trevor Owens

Background: Myelin-specific T cells are implicated in multiple sclerosis (MS) and drive experimental autoimmune encephalomyelitis (EAE). EAE is commonly induced with short peptides, whereas in MS, whole myelin proteins are available for immune response. We asked whether immunization with the immunoglobulin-like domain of myelin oligodendrocyte glycoprotein (MOGIgd, residues 1–125) might induce distinct CD4+ T-cell response and/or a stronger CD8+ T-cell response, compared to the 21 amino acid immunodominant MHC II-associating peptide (p35–55). Objectives: Compare both EAE and T-cell responses in C57BL/6 mice immunized with MOGIgd and MOG p35–55. Methods: Cytokine production, and chemokine receptor expression by CD4+ and CD8+ T cells in the mouse central nervous system (CNS), were analyzed by flow cytometry. Results: MOGIgd triggered progression to more severe EAE than MOG p35–55, despite similar time of onset and overall incidence. EAE in MOGIgd-immunized mice was characterized by an increased percentage of CXCR3+ interferon-γ-producing CD4+ T cells in CNS. The CD8+ T-cell response to both immunogens was similar. Conclusions: Increased incidence of severe disease following MOGIgd immunization, accompanied by an increased percentage of CD4+ T cells in the CNS expressing CXCR3 and producing interferon-γ, identifies a pathogenic role for interferon-γ that is not seen when disease is induced with a single Major Histocompatibility Complex (MHC) II-associating epitope.


Sign in / Sign up

Export Citation Format

Share Document