Dual role of the TRPV4 channel as a sensor of flow and osmolality in renal epithelial cells

2007 ◽  
Vol 293 (5) ◽  
pp. F1699-F1713 ◽  
Author(s):  
Ling Wu ◽  
Xiaochong Gao ◽  
Rachel C. Brown ◽  
Stefan Heller ◽  
Roger G. O'Neil

Gain/loss of function studies were utilized to assess the potential role of the endogenous vanilloid receptor TRPV4 as a sensor of flow and osmolality in M-1 collecting duct cells (CCD). TRPV4 mRNA and protein were detectable in M-1 cells and stably transfected HEK-293 cells, where the protein occurred as a glycosylated doublet on Western blots. Immunofluorescence imaging demonstrated expression of TRPV4 at the cell membranes of TRPV4-transfected HEK and M-1 cells and at the luminal membrane of mouse kidney CCD. By using intracellular calcium imaging techniques, calcium influx was monitored in cells grown on coverslips. Application of known activators of TRPV4, including 4α-PDD and hypotonic medium, induced strong calcium influx in M-1 cells and TRPV4-transfected HEK-293 cells but not in nontransfected cells. Applying increased flow/shear stress in a parallel plate chamber induced calcium influx in both M-1 and TRPV4-transfected HEK cells but not in nontransfected HEK cells. Furthermore, in loss-of-function studies employing small interference (si)RNA knockdown techniques, transfection of both M-1 and TRPV4-transfected HEK cells with siRNA specific for TRPV4, but not an inappropriate siRNA, led to a time-dependent decrease in TRPV4 expression that was accompanied by a loss of stimuli-induced calcium influx to flow and hypotonicity. It is concluded that TRPV4 displays a mechanosensitive nature with activation properties consistent with a molecular sensor of both fluid flow (or shear stress) and osmolality, or a component of a sensor complex, in flow-sensitive renal CCD.

2005 ◽  
Vol 103 (6) ◽  
pp. 1156-1166 ◽  
Author(s):  
Kevin J. Gingrich ◽  
Son Tran ◽  
Igor M. Nikonorov ◽  
Thomas J. Blanck

Background Volatile anesthetics depress cardiac contractility, which involves inhibition of cardiac L-type calcium channels. To explore the role of voltage-dependent inactivation, the authors analyzed halothane effects on recombinant cardiac L-type calcium channels (alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1), which differ by the alpha2/delta1 subunit and consequently voltage-dependent inactivation. Methods HEK-293 cells were transiently cotransfected with complementary DNAs encoding alpha1C tagged with green fluorescent protein and beta2a, with and without alpha2/delta1. Halothane effects on macroscopic barium currents were recorded using patch clamp methodology from cells expressing alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1 as identified by fluorescence microscopy. Results Halothane inhibited peak current (I(peak)) and enhanced apparent inactivation (reported by end pulse current amplitude of 300-ms depolarizations [I300]) in a concentration-dependent manner in both channel types. alpha2/delta1 coexpression shifted relations leftward as reported by the 50% inhibitory concentration of I(peak) and I300/I(peak)for alpha1Cbeta2a (1.8 and 14.5 mm, respectively) and alpha1Cbeta2aalpha2/delta1 (0.74 and 1.36 mm, respectively). Halothane reduced transmembrane charge transfer primarily through I(peak) depression and not by enhancement of macroscopic inactivation for both channels. Conclusions The results indicate that phenotypic features arising from alpha2/delta1 coexpression play a key role in halothane inhibition of cardiac L-type calcium channels. These features included marked effects on I(peak) inhibition, which is the principal determinant of charge transfer reductions. I(peak) depression arises primarily from transitions to nonactivatable states at resting membrane potentials. The findings point to the importance of halothane interactions with states present at resting membrane potential and discount the role of inactivation apparent in current time courses in determining transmembrane charge transfer.


2007 ◽  
Vol 292 (3) ◽  
pp. F1028-F1034 ◽  
Author(s):  
W. Bruce Sneddon ◽  
Yanmei Yang ◽  
Jianming Ba ◽  
Lisa M. Harinstein ◽  
Peter A. Friedman

The PTH receptor (PTH1R) activates multiple signaling pathways, including extracellular signal-regulated kinases 1 and 2 (ERK1/2). The role of epidermal growth factor receptor (EGFR) transactivation in ERK1/2 activation by PTH in distal kidney cells, a primary site of PTH action, was characterized. ERK1/2 phosphorylation was stimulated by PTH and blocked by the EGFR inhibitor, AG1478. Upon PTH stimulation, metalloprotease cleavage of membrane-bound heparin-binding fragment (HB-EGF) induced EGFR transactivation of ERK. Conditioned media from PTH-treated distal kidney cells activated ERK in HEK-293 cells. AG1478 added to HEK-293 cells ablated transactivation by conditioned media. HB-EGF directly activated ERK1/2 in HEK-293 cells. Pretreatment of distal kidney cells with the metalloprotease inhibitor GM-6001 abolished transactivation of ERK1/2 by PTH. The role of the PTH1R COOH terminus in PTX-sensitive ERK1/2 activation was characterized in HEK-293 cells transfected with wild-type PTH1R, with a PTH1R mutated at its COOH terminus, or with PTH1R truncated at position 480. PTH stimulated ERK by wild-type, mutated and truncated PTH1Rs 21-, 27- and 57-fold, respectively. Thus, the PTH1R COOH terminus exerts an inhibitory effect on ERK activation. EBP50, a scaffolding protein that binds to the PDZ recognition domain of the PTH1R, impaired PTH but not isoproterenol or calcitonin-induced ERK activation. Pertussis toxin inhibited PTH-stimulated ERK1/2 by mutated and truncated PTH1Rs and abolished ERK1/2 activation by wild-type PTH1R. We conclude that ERK phosphorylation in distal kidney cells by PTH requires PTH1R activation of Gi, which leads to stimulation of metalloprotease-mediated cleavage of HB-EGF and transactivation of the EGFR and is regulated by EBP50.


1999 ◽  
Vol 276 (2) ◽  
pp. C328-C336 ◽  
Author(s):  
Christopher M. Gillen ◽  
Bliss Forbush

We have studied the regulation of the K-Cl cotransporter KCC1 and its functional interaction with the Na-K-Cl cotransporter. K-Cl cotransporter activity was substantially activated in HEK-293 cells overexpressing KCC1 (KCC1-HEK) by hypotonic cell swelling, 50 mM external K, and pretreatment with N-ethylmaleimide (NEM). Bumetanide inhibited 86Rb efflux in KCC1-HEK cells after cell swelling [inhibition constant ( K i) ∼190 μM] and pretreatment with NEM ( K i ∼60 μM). Thus regulation of KCC1 is consistent with properties of the red cell K-Cl cotransporter. To investigate functional interactions between K-Cl and Na-K-Cl cotransporters, we studied the relationship between Na-K-Cl cotransporter activation and intracellular Cl concentration ([Cl]i). Without stimulation, KCC1-HEK cells had greater Na-K-Cl cotransporter activity than controls. Endogenous Na-K-Cl cotransporter of KCC1-HEK cells was activated <2-fold by low-Cl hypotonic prestimulation, compared with 10-fold activation in HEK-293 cells and >20-fold activation in cells overexpressing the Na-K-Cl cotransporter (NKCC1-HEK). KCC1-HEK cells had lower resting [Cl]i than HEK-293 cells; cell volume was not different among cell lines. We found a steep relationship between [Cl]i and Na-K-Cl cotransport activity within the physiological range, supporting a primary role for [Cl]iin activation of Na-K-Cl cotransport and in apical-basolateral cross talk in ion-transporting epithelia.


2002 ◽  
Vol 277 (16) ◽  
pp. 13597-13608 ◽  
Author(s):  
Xiaoyan Wu ◽  
György Babnigg ◽  
Tatiana Zagranichnaya ◽  
Mitchel L. Villereal

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2474-2474
Author(s):  
Mary Risinger ◽  
Jesse Rinehart ◽  
Scott Crable ◽  
Anna Ottlinger ◽  
Richard Winkelmann ◽  
...  

Abstract The KCl cotransporter (KCC) mediates volume reduction in normal reticulocytes and exaggerated KCC activity in sickle red blood cells (SS RBC) (Joiner et al, Blood109:1728, 2007) contributes to pathological dehydration that potentiates sickling. Three separate genes (KCC1, KCC3, KCC4) are expressed in RBC (Crable et al, Exp. Hem.33:624, 2005). KCC1 and KCC3 proteins have been shown to interact in ex vivo expression systems (Simard et al, JBC282(25):18083, 2007), and co-expression of an N-terminal truncation of KCC1 reduces KCC activity mediated by full-length KCC1 or KCC3 (Casula et al. JBC276:41870, 2001), suggesting functional interaction. We show here via western blot analysis that SS RBC membranes contain more KCC1 protein (relative to KCC3) than AA RBC, independent of the reticulocytosis of sickle blood. Immunoprecipitation of solubilized SS RBC membranes with KCC3-specific antibody yielded a band at 125 kD on SDS PAGE which contained KCC1, as identified by western blotting with KCC1-specific antibody and by TOF mass spectroscopy. The effect of co-expression of KCC1 and KCC3 on KCC activity was assessed by measuring NEM-stimulated, Cl-dependent, (ouabain + bumetanide)-insensitive Rb uptake in HEK 293 cells. The Flip-In T-rex HEK 293 cell line (Invitrogen) containing a tetracycline-response promoter was transfected with a pcDNA5a plasmid containing KCC3a cDNA. Recombination of the plasmid with the integrated tet-promoter construct inserts the KCC3a gene under control of a tetracycline-responsive promoter. These cells were subsequently transduced with a retroviral vector (SF-91. Hildinger et at, Gene Ther. 5:1575, 1998) containing KCC1 cDNA linked to a GFP cassette. Control cells contained SF-91 vector lacking KCC1. Cells were selected for GFP expression and grown in the absence (un-induced, no KCC3a expression) or presence of tetracycline (induced, KCC3a expression). From this binary matrix, four types of cells were obtained: Cells with no additional KCC expression, representing endogenous KCC activity; cells with only KCC1 or KCC3a expression; cells with both KCC1 and KCC3a expression. Western blots indicated similar KCC1 expression in cells with KCC1 only and [KCC1 + KCC3] and similar KCC3 expression in cells with KCC3 only and [KCC1 + KCC3]. Thus, the expression of neither isoform was affected by the presence of the other. KCC activity in cells overexpressing KCC1 only was similar to endogenous activity in HEK 293 cells; i.e., transport activity of KCC1 alone was minimal. Cells overexpressing KCC3 only had a 5-fold increase in KCC activity over endogenous levels. When KCC1 was co-expressed with KCC3 in [KCC1 + KCC3] cells, an additional 50% increase in KCC activity was observed (p &lt; 0.05 by paired t-test, N=4), despite similar levels of KCC3 expression by western blot analysis. This synergistic effect was dependent on the cytoplasmic N-terminus of KCC1, as it was not seen when the first 39 amino acids of KCC1 were removed. Interestingly, removal of the entire cytoplasmic N-terminal domain (117 aa) produced an inhibitory effect when co-expressed with KCC3a in HEK cells, as previously reported in Xenopus oocytes (Casula et al.). These data indicate that KCC1 and KCC3 interact structurally and functionally in RBC membranes, and provide another potential mechanism for regulation of KCC activity via multimeric associations between KCC isoforms. Thus, KCC activity could be modulated not only by transcriptional mechanisms and post-translational modification (phosphorylation), but also by altering the ratios of KCC isoforms or the kinetics of their association. We speculate that higher levels of KCC1 protein relative to KCC3 in SS RBC membranes could account for higher KCC activity in these cells relative to AA RBC.


Gene Therapy ◽  
2002 ◽  
Vol 9 (14) ◽  
pp. 907-914 ◽  
Author(s):  
WLW Ling ◽  
RL Longley ◽  
DL Brassard ◽  
L Armstrong ◽  
EJ Schaefer

2021 ◽  
Vol 22 (19) ◽  
pp. 10638
Author(s):  
Chayma El Khamlichi ◽  
Laetitia Cobret ◽  
Jean-Michel Arrang ◽  
Séverine Morisset-Lopez

G-protein-coupled receptors (GPCRs) are dimeric proteins, but the functional consequences of the process are still debated. Active GPCR conformations are promoted either by agonists or constitutive activity. Inverse agonists decrease constitutive activity by promoting inactive conformations. The histamine H3 receptor (H3R) is the target of choice for the study of GPCRs because it displays high constitutive activity. Here, we study the dimerization of recombinant and brain H3R and explore the effects of H3R ligands of different intrinsic efficacy on dimerization. Co-immunoprecipitations and Western blots showed that H3R dimers co-exist with monomers in transfected HEK 293 cells and in rodent brains. Bioluminescence energy transfer (BRET) analysis confirmed the existence of spontaneous H3R dimers, not only in living HEK 293 cells but also in transfected cortical neurons. In both cells, agonists and constitutive activity of the H3R decreased BRET signals, whereas inverse agonists and GTPγS, which promote inactive conformations, increased BRET signals. These findings show the existence of spontaneous H3R dimers not only in heterologous systems but also in native tissues, which are able to adopt a number of allosteric conformations, from more inactive to more active states.


EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
G Nasilli ◽  
L Yiangou ◽  
C Palandri ◽  
AO Verkerk ◽  
RP Davis ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background The sodium channel blocker mexiletine can reduce late sodium current (INa) in patients with LQT3 syndrome, and additionally restore the decreased peak INa associated with SCN5A loss of function mutations. Purpose To investigate whether mexiletinecan rescue the mixed phenotype associated with the SCN5A-1795insD mutation in human induced pluripotent stem cells derived cardiomyocytes (hiPSC-CMs). Methods and Results HEK293 cells transfected with SCN5A-1795insD and SCN5A-WT and hiPSC-CMs from a patient carrying the SCN5A-1795insD mutation were incubated with a therapeutic dose of mexiletine (10 µM) or vehicle (H2O) for 48h. Peak INa, late INa and action potential (AP) properties were assessed by patch-clamp analysis. In HEK-293 cells transfected with SCN5A-1795insD or SCN5A-WT, exposure to mexiletine caused a significant increase in peak INa, in addition to a small increase in late INa in HEK-293 cells transfected with SCN5A-1795insD. In 1795insD hiPSC-CMs, peak INa was significantly increased whereas late INa was unchanged after mexiletine treatment. Accordingly, mexiletine increased AP upstroke velocity in SCN5A-1795insD hiPSC-CMs (indicating a rescue of INa availability), while AP amplitude, resting membrane potential and AP duration were unaffected. Conclusions Chronic treatment with a therapeutic concentration of mexiletine is capable of rescuing the mixed phenotype in SCN5A-1795insD hiPSC-CMs.


2016 ◽  
Vol 310 (2) ◽  
pp. C161-C174 ◽  
Author(s):  
Sampath K. Loganathan ◽  
Chris M. Lukowski ◽  
Joseph R. Casey

Large cytoplasmic domains (CD) are a common feature among integral membrane proteins. In virtually all cases, these CD have a function (e.g., binding cytoskeleton or regulatory factors) separate from that of the membrane domain (MD). Strong associations between CD and MD are rare. Here we studied SLC4A11, a membrane transport protein of corneal endothelial cells, the mutations of which cause genetic corneal blindness. SLC4A11 has a 41-kDa CD and a 57-kDa integral MD. One disease-causing mutation in the CD, R125H, manifests a catalytic defect, suggesting a role of the CD in transport function. Expressed in HEK-293 cells without the CD, MD-SLC4A11 is retained in the endoplasmic reticulum, indicating a folding defect. Replacement of CD-SLC4A11 with green fluorescent protein did not rescue MD-SLC4A11, suggesting some specific role of CD-SLC4A11. Homology modeling revealed that the structure of CD-SLC4A11 is similar to that of the Cl−/HCO3−exchange protein AE1 (SLC4A1) CD. Fusion to CD-AE1 partially rescued MD-SLC4A11 to the cell surface, suggesting that the structure of CD-AE1 is similar to that of CD-SLC4A11. The CD-AE1-MD-SLC4a11 chimera, however, had no functional activity. We conclude that CD-SLC4A11 has an indispensable role in the transport function of SLC4A11. CD-SLC4A11 forms insoluble precipitates when expressed in bacteria, suggesting that the domain cannot fold properly when expressed alone. Consistent with a strong association between CD-SLC4A11 and MD-SLC4A11, these domains specifically associate when coexpressed in HEK-293 cells. We conclude that SLC4A11 is a rare integral membrane protein in which the CD has strong associations with the integral MD, which contributes to membrane transport function.


2010 ◽  
Vol 56 (7) ◽  
pp. 1166-1176 ◽  
Author(s):  
Alexander G Semenov ◽  
Natalia N Tamm ◽  
Karina R Seferian ◽  
Alexander B Postnikov ◽  
Natalia S Karpova ◽  
...  

Abstract Background: B-type natriuretic peptide (BNP) and its N-terminal fragment (NT-proBNP) are the products of the enzyme-mediated cleavage of their precursor molecule, proBNP. The clinical significance of proBNP-derived peptides as biomarkers of heart failure has been explored thoroughly, whereas little is known about the mechanisms of proBNP processing. We investigated the role of 2 candidate convertases, furin and corin, in human proBNP processing. Methods: We measured proBNP expression in HEK 293 and furin-deficient LoVo cells. We used a furin inhibitor and a furin-specific small interfering RNA (siRNA) to explore the implication of furin in proBNP processing. Recombinant proBNPs were incubated with HEK 293 cells transfected with the corin-expressing plasmid. We applied mass spectrometry to analyze the products of furin- and corin-mediated cleavage. Results: Reduction of furin activity significantly impaired proBNP processing in HEK 293 cells. Furin-deficient LoVo cells were unable to process proBNP, whereas coexpression with furin resulted in effective proBNP processing. Mass spectrometric analysis revealed that the furin-mediated cleavage of proBNP resulted in BNP 1–32, whereas corin-mediated cleavage led to the production of BNP 4–32. Some portion of proBNP in the plasma of heart failure patients was not glycosylated in the cleavage site region and was susceptible to furin-mediated cleavage. Conclusions: Both furin and corin are involved in the proBNP processing pathway, giving rise to distinct BNP forms. The significance of the presence of unprocessed proBNP in circulation that could be cleaved by the endogenous convertases should be further investigated for better understanding BNP physiology.


Sign in / Sign up

Export Citation Format

Share Document