scholarly journals Activation of ENaC in collecting duct cells by prorenin and its receptor PRR: involvement of Nox4-derived hydrogen peroxide

2016 ◽  
Vol 310 (11) ◽  
pp. F1243-F1250 ◽  
Author(s):  
Xiaohan Lu ◽  
Fei Wang ◽  
Mi Liu ◽  
Kevin T. Yang ◽  
Adam Nau ◽  
...  

The collecting duct (CD) has been recognized as an important source of prorenin/renin, and it also expresses (pro)renin receptor (PRR). The goal of this study was to examine the hypothesis that prorenin or renin via PRR regulates epithelial Na+ channel (ENaC) activity in mpkCCD cells. Transepithelial Na+ transport was measured by using a conventional epithelial volt-ohmmeter and was expressed as the calculated equivalent current ( Ieq). Amiloride-inhibitable Ieq was used as a reflection of ENaC activity. Administration of prorenin in the nanomolar range induced a significant increase in Ieq that was detectable as early as 1 min, peaked at 5 min, and gradually returned to baseline within 15 min. These changes in Ieq were completely prevented by a newly developed PRR decoy inhibitor, PRO20. Prorenin-induced Ieq was inhibitable by amiloride. Compared with prorenin, renin was less effective in stimulating Ieq. Prorenin-induced Ieq was attenuated by apocynin but enhanced by tempol, the latter effect being prevented by catalase. In response to prorenin treatment, the levels of total reactive oxygen species and H2O2 were both increased, as detected by spin-trap analysis and reactive oxygen species (ROS)-Glo H2O2 assay, respectively. Both siRNA-mediated Nox4 knockdown and the dual Nox1/4 inhibitor GKT137892 attenuated prorenin-induced Ieq. Overall, our results demonstrate that activation of PRR by prorenin stimulates ENaC activity in CD cells via Nox4-derived H2O2.

2005 ◽  
Vol 280 (41) ◽  
pp. 34966-34973 ◽  
Author(s):  
Tianxin Yang ◽  
Aihua Zhang ◽  
Matthew Honeggar ◽  
Donald E. Kohan ◽  
Diane Mizel ◽  
...  

2020 ◽  
Vol 17 (2) ◽  
pp. 182 ◽  
Author(s):  
Nicole Roldán ◽  
Danitza Pizarro ◽  
Marcelo Verdugo ◽  
Nicolas Salinas-Parra ◽  
Waldo Quiroz ◽  
...  

Environmental contextAntimony is a metalloid occurring at overall low concentrations in the Earth’s crust. Owing to anthropogenic activities, however, antimony can be found at elevated and detrimental levels in some environments. We report eco-toxicological effects of antimony in biological models, results from which can help predict antimony’s ecological and environmental impact. AbstractThe aim of this work was to evaluate the effect of SbIII on cell integrity, expression of profibrotic factors and reactive oxygen species (ROS) in mouse cortical collecting duct cells (M-1 cell line). M-1 cells were incubated with SbIII for 24h. Cell morphology and RNA expression level (connecting tissue growth factor, CTGF), α-SMOOTH MUSCLE ACTIN (α-SMA) and collagen I were analysed. The total Sb content according to each cell compartment was determined and ROS production was measured. Eighty percent of the total Sb was detected in the extracellular medium. A significant increase in ROS production and CTGF protein expression were observed at 100μgL−1 SbIII. M-1 cells showed a non-classic epithelial cell shape at 100μgL−1 and a reduction in the collecting duct-specific marker aquaporin-2. At 100μgL−1, the number of collagen I-positive cells increased. At 300μgL−1, a gross cell nuclear rupture was observed. These results demonstrate that an SbIII concentration of 100μgL−1 is able to promote the induction of CTGF and collagen I along with the induction of ROS, which suggests a cytotoxicity of SbIII in M-1 kidney collecting duct cells.


Author(s):  
Qian Wu ◽  
Youmei Li ◽  
Ying Li ◽  
Dong Wang ◽  
Ben Zhong Tang

Hydrogen peroxide (H2O2), as one kind of key reactive oxygen species (ROS), is mainly produced endogenously primarily in the mitochondria. The selective monitoring of H2O2 in living cells is of...


2021 ◽  
Author(s):  
Chunning Sun ◽  
Michael Gradzielski

Hydrogen peroxide (H2O2), a key reactive oxygen species, plays an important role in living organisms, industrial and environmental fields. Here, a non-contact upconversion nanosystem based on the excitation energy attenuation...


2018 ◽  
Vol 19 (12) ◽  
pp. 4078 ◽  
Author(s):  
Dahn Clemens ◽  
Michael Duryee ◽  
Cleofes Sarmiento ◽  
Andrew Chiou ◽  
Jacob McGowan ◽  
...  

Doxycycline (DOX), a derivative of tetracycline, is a broad-spectrum antibiotic that exhibits a number of therapeutic activities in addition to its antibacterial properties. For example, DOX has been used in the management of a number of diseases characterized by chronic inflammation. One potential mechanism by which DOX inhibits the progression of these diseases is by reducing oxidative stress, thereby inhibiting subsequent lipid peroxidation and inflammatory responses. Herein, we tested the hypothesis that DOX directly scavenges reactive oxygen species (ROS) and inhibits the formation of redox-mediated malondialdehyde-acetaldehyde (MAA) protein adducts. Using a cell-free system, we demonstrated that DOX scavenged reactive oxygen species (ROS) produced during the formation of MAA-adducts and inhibits the formation of MAA-protein adducts. To determine whether DOX scavenges specific ROS, we examined the ability of DOX to directly scavenge superoxide and hydrogen peroxide. Using electron paramagnetic resonance (EPR) spectroscopy, we found that DOX directly scavenged superoxide, but not hydrogen peroxide. Additionally, we found that DOX inhibits MAA-induced activation of Nrf2, a redox-sensitive transcription factor. Together, these findings demonstrate the under-recognized direct antioxidant property of DOX that may help to explain its therapeutic potential in the treatment of conditions characterized by chronic inflammation and increased oxidative stress.


2018 ◽  
Vol 20 (24) ◽  
pp. 7916-7920 ◽  
Author(s):  
Prerona Bora ◽  
Preeti Chauhan ◽  
Suman Manna ◽  
Harinath Chakrapani

2012 ◽  
Vol 48 (39) ◽  
pp. 4719 ◽  
Author(s):  
Manoj Kumar ◽  
Naresh Kumar ◽  
Vandana Bhalla ◽  
Parduman Raj Sharma ◽  
Yasrib Qurishi

Author(s):  
Dumitriţa RUGINǍ ◽  
Adela PINTEA ◽  
Raluca PÂRLOG ◽  
Andreea VARGA

Oxidative stress causes biological changes responsible for carcinogenesis and aging in human cells. The retinal pigmented epithelium is continuously exposed to oxidative stress. Therefore reactive oxygen species (ROS) and products of lipid peroxidation accumulate in RPE. Neutralization of ROS occurs in retina by the action of antioxidant defence systems. In the present study, the protective effect of caffeic acid (3,4-dihydroxy cinnamic acid), a dietary phenolic compound, has been examined in normal and in oxidative stress conditions (500 µM peroxide oxygen) in cultures human epithelial pigment retinal cells (Nowak, M. et al.). The cell viability, the antioxidant enzymes activity (CAT, GPx, SOD) and the level of intracellular reactive oxygen species (ROS) were determined. Exposure to l00 µM caffeic acid for 24 h induced cellular changes indicating the protective effect of caffeic acid in RPE cells. Caffeic acid did not show any cytotoxic effect at concentrations lower than 200 μM in culture medium. Treatment of RPE cells with caffeic acid causes an increase of catalase, glutathione peroxidase and superoxide dismutase activity, especially in cells treated with hydrogen peroxide. Caffeic acid causes a decrease of ROS level in cells treated with hydrogen peroxide. This study proved that caffeic acid or food that contain high levels of this phenolic acid may have beneficial effects in prevention of retinal diseases associated with oxidative stress by improving antioxidant defence systems.


Planta ◽  
2008 ◽  
Vol 229 (3) ◽  
pp. 485-495 ◽  
Author(s):  
Xiao-juan Zong ◽  
Da-peng Li ◽  
Ling-kun Gu ◽  
De-quan Li ◽  
Li-xia Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document