A charge transfer assisted fluorescent probe for selective detection of hydrogen peroxide among different reactive oxygen species

2012 ◽  
Vol 48 (39) ◽  
pp. 4719 ◽  
Author(s):  
Manoj Kumar ◽  
Naresh Kumar ◽  
Vandana Bhalla ◽  
Parduman Raj Sharma ◽  
Yasrib Qurishi
2019 ◽  
Vol 45 (12) ◽  
pp. 5781-5800 ◽  
Author(s):  
Przemysław Łabuz ◽  
Joanna Gryboś ◽  
Piotr Pietrzyk ◽  
Kamila Sobańska ◽  
Wojciech Macyk ◽  
...  

Abstract Interaction of amorphous and crystalline TiO2 ultrafine particles (2–6 nm) with rutin results in the formation of colored nanomaterials of an excellent dispersity and enhanced colloidal stability in aqueous media. The FTIR and Raman spectra confirmed attachment of the rutin ligand via vicinal hydroxyl groups in a catechol-like fashion. The binding of rutin to amorphous TiO2 gives rise to spontaneous crystallization of the parent nanoparticles into hydrogen titanates (H2Ti3O7 and H2Ti12O25). Such structural transformations result in photosensitization toward visible light with enhanced efficiency of the charge separation and interfacial charge transfer processes, confirmed by detailed photoelectrochemical studies of the examined nanomaterials. The effectiveness of the photocatalytic ROS generation reactions was also strongly influenced by hydrogen peroxide, which plays a double role of a reactant prone to reduction and generation of hydroxyl radicals or a redox agent destroying the intra-band gap electronic states, suppressing thereby charge recombination. The photoinduced charge transfer processes lead to generation of various reactive oxygen species, which were detected by EPR using DMPO spin trap (HOO· detection) and in the reaction with terephthalic acid acting as a chemical scavenger (HO· detection). Complexation of TiO2 particles with rutin shifts the photogeneration of hydroperoxyl (HOO·) and hydroxyl (HO·) radicals toward visible light (λ > 400 nm). A triple effect of rutin attachment to titania was established. It consists in pronounced photosensitization, promotion of crystallization and enhancement of the colloidal stability of ultrafine titania particles. Environmental implications of these assets on the photoinduced redox reactions with hydrogen peroxide in aqueous solutions upon UV or visible light irradiation were also discussed.


RSC Advances ◽  
2021 ◽  
Vol 11 (39) ◽  
pp. 24032-24037
Author(s):  
Rongrong Zhou ◽  
Qiyao Peng ◽  
Dan Wan ◽  
Chao Yu ◽  
Yuan Zhang ◽  
...  

Hydrogen peroxide (H2O2), an important reactive oxygen species (ROS) with unique destructive oxidation properties, can be produced in lysosomes to fight off pathogens.


Author(s):  
Qian Wu ◽  
Youmei Li ◽  
Ying Li ◽  
Dong Wang ◽  
Ben Zhong Tang

Hydrogen peroxide (H2O2), as one kind of key reactive oxygen species (ROS), is mainly produced endogenously primarily in the mitochondria. The selective monitoring of H2O2 in living cells is of...


2021 ◽  
Author(s):  
Chunning Sun ◽  
Michael Gradzielski

Hydrogen peroxide (H2O2), a key reactive oxygen species, plays an important role in living organisms, industrial and environmental fields. Here, a non-contact upconversion nanosystem based on the excitation energy attenuation...


2018 ◽  
Vol 19 (12) ◽  
pp. 4078 ◽  
Author(s):  
Dahn Clemens ◽  
Michael Duryee ◽  
Cleofes Sarmiento ◽  
Andrew Chiou ◽  
Jacob McGowan ◽  
...  

Doxycycline (DOX), a derivative of tetracycline, is a broad-spectrum antibiotic that exhibits a number of therapeutic activities in addition to its antibacterial properties. For example, DOX has been used in the management of a number of diseases characterized by chronic inflammation. One potential mechanism by which DOX inhibits the progression of these diseases is by reducing oxidative stress, thereby inhibiting subsequent lipid peroxidation and inflammatory responses. Herein, we tested the hypothesis that DOX directly scavenges reactive oxygen species (ROS) and inhibits the formation of redox-mediated malondialdehyde-acetaldehyde (MAA) protein adducts. Using a cell-free system, we demonstrated that DOX scavenged reactive oxygen species (ROS) produced during the formation of MAA-adducts and inhibits the formation of MAA-protein adducts. To determine whether DOX scavenges specific ROS, we examined the ability of DOX to directly scavenge superoxide and hydrogen peroxide. Using electron paramagnetic resonance (EPR) spectroscopy, we found that DOX directly scavenged superoxide, but not hydrogen peroxide. Additionally, we found that DOX inhibits MAA-induced activation of Nrf2, a redox-sensitive transcription factor. Together, these findings demonstrate the under-recognized direct antioxidant property of DOX that may help to explain its therapeutic potential in the treatment of conditions characterized by chronic inflammation and increased oxidative stress.


2018 ◽  
Vol 20 (24) ◽  
pp. 7916-7920 ◽  
Author(s):  
Prerona Bora ◽  
Preeti Chauhan ◽  
Suman Manna ◽  
Harinath Chakrapani

2013 ◽  
Vol 295-298 ◽  
pp. 475-478 ◽  
Author(s):  
Zhi Xiang Han ◽  
Ming Hui Du ◽  
Guo Xi Liang ◽  
Xiang Yang Wu

Rhodamine B thiohydrazide (RBS) was firstly employed as turn-on fluorescent probe for hypochlorite in aqueous solution and living cells. It exhibits a stable response to hypochlorite from 1.0×10-6to 1.0×10-5M with a detection limit of 3.3×10-7M. The response of this probe to hypochlorite is fast and highly selective compared with other reactive oxygen species (such as.OH,1O2, H2O2) and other common anions (such as X-, ClO2-, ClO4-, NO3-, NO2-, OH-, Ac-, CO32-, SO42-).


Author(s):  
Dumitriţa RUGINǍ ◽  
Adela PINTEA ◽  
Raluca PÂRLOG ◽  
Andreea VARGA

Oxidative stress causes biological changes responsible for carcinogenesis and aging in human cells. The retinal pigmented epithelium is continuously exposed to oxidative stress. Therefore reactive oxygen species (ROS) and products of lipid peroxidation accumulate in RPE. Neutralization of ROS occurs in retina by the action of antioxidant defence systems. In the present study, the protective effect of caffeic acid (3,4-dihydroxy cinnamic acid), a dietary phenolic compound, has been examined in normal and in oxidative stress conditions (500 µM peroxide oxygen) in cultures human epithelial pigment retinal cells (Nowak, M. et al.). The cell viability, the antioxidant enzymes activity (CAT, GPx, SOD) and the level of intracellular reactive oxygen species (ROS) were determined. Exposure to l00 µM caffeic acid for 24 h induced cellular changes indicating the protective effect of caffeic acid in RPE cells. Caffeic acid did not show any cytotoxic effect at concentrations lower than 200 μM in culture medium. Treatment of RPE cells with caffeic acid causes an increase of catalase, glutathione peroxidase and superoxide dismutase activity, especially in cells treated with hydrogen peroxide. Caffeic acid causes a decrease of ROS level in cells treated with hydrogen peroxide. This study proved that caffeic acid or food that contain high levels of this phenolic acid may have beneficial effects in prevention of retinal diseases associated with oxidative stress by improving antioxidant defence systems.


Sign in / Sign up

Export Citation Format

Share Document