Expression and cellular localization of mRNA encoding the "gastric" isoform of H(+)-K(+)-ATPase alpha-subunit in rat kidney

1995 ◽  
Vol 268 (1) ◽  
pp. F99-F109 ◽  
Author(s):  
K. Y. Ahn ◽  
B. C. Kone

The distribution of transcripts encoding the gastric H(+)-K(+)-adenosinetriphosphatase (ATPase) alpha-subunit in the normal rat kidney was studied by reverse transcription-polymerase chain reaction (RT-PCR), combined with DNA sequence analysis and renal microdissection, and by nonradioactive in situ hybridization of fixed kidney sections using highly specific molecular probes. RT-PCR products corresponding to the gastric H(+)-K(+)-ATPase alpha-subunit were detected in the cortex, outer and inner medulla, and in isolated cortical (CCD) and inner medullary collecting ducts (IMCD). With digoxigenin-labeled cRNAs derived from the 5' and 3' ends of the gastric H(+)-K(+)-ATPase alpha-subunit cDNA, specific hybridization signal was detected prominently in all the cells of the connecting segment and CCD, the intercalated cells of the outer medullary collecting duct, the IMCD, and the renal pelvic epithelium lining the secondary pouches. Weak labeling was noted in the S3 segment of the proximal tubule, the distal convoluted tubule, and the cortical thick ascending limb of Henle. Hybridization with the sense probes produced no cellular labeling. These data provide the first direct demonstration for the expression and cellular distribution of mRNA encoding the gastric H(+)-K(+)-ATPase alpha-subunit in the normal, potassium-replete kidney, and they provide essential tools for the molecular analysis of renal acid base and potassium transport under physiological and pathophysiological conditions.

1995 ◽  
Vol 268 (6) ◽  
pp. F1224-F1228 ◽  
Author(s):  
P. Borensztein ◽  
M. Froissart ◽  
K. Laghmani ◽  
M. Bichara ◽  
M. Paillard

The thick ascending limb (TAL) of rat kidney absorbs bicarbonate secondary to proton secretion, but displays both basolateral and luminal Na+/H+ exchange (NHE) activity. Several NHE genes, including NHE-1, NHE-2, NHE-3, and NHE-4, are expressed in the kidney. To identify the NHE isoforms expressed in the rat medullary TAL (MTAL), we used the reverse transcription-polymerase chain reaction (RT-PCR) to detect the mRNAs for NHE in microdissected MTAL. RT-PCR amplification from total RNA was performed between two specific primers for each NHE isoform. In rat kidney homogenate, the four NHE isoform mRNAs were detected, and the identity of the PCR products was demonstrated by the sizes of the fragments, digestion with restriction enzymes, and Southern blot analysis. In microdissected rat MTAL, NHE-3 was strongly expressed and NHE-1 mRNA was also detected, whereas NHE-2 and NHE-4 mRNAs were not detected. Therefore, NHE-3 could be the apical Na+/H+ exchanger, and NHE-1 could be the basolateral isoform in the MTAL.


1998 ◽  
Vol 46 (2) ◽  
pp. 249-256 ◽  
Author(s):  
Ying Hu ◽  
Ning Ma ◽  
Miao Yang ◽  
Reiji Semba

Recent studies suggest that carbon monoxide (CO), which is formed by the enzyme heme oxygenase (HO) during the conversion of heme to biliverdin, shares some of the chemical and biological properties of nitric oxide (NO) and may play roles similar to those of NO. Heme oxygenase activity in the kidney has been reported for many years, and there are some reports on the expression of mRNA for two HO isozymes (HO-1 and HO-2) and cellular localization of HO-1 protein. However, cellular localization of HO-2 protein in the kidney under normal conditions has not been reported. In the present study we examined the expression and distribution of HO-2 mRNA and HO-2 protein in rat kidney using RNA protection assay and light and electron immunocytochemistry. RNA protection assay confirmed constitutive expression of HO-2 transcript in rat kidney. HO-2 immunoreactivity was selectively found in epithelial cells of the thick ascending limb and distal convoluted tubule, connecting tubule cells, and principal cells of the collecting duct. These results suggest that HO-2 is synthesized in the kidney and that HO-2 in the epithelial cells of renal tubules may serve as a source for CO generation under normal conditions.


2000 ◽  
Vol 278 (4) ◽  
pp. F659-F666 ◽  
Author(s):  
Masayuki Tanemoto ◽  
Carlos G. Vanoye ◽  
Ke Dong ◽  
Richard Welch ◽  
Takaaki Abe ◽  
...  

Recent studies showed that coexpression of Kir6.1 or Kir6.2 with the sulfonylurea receptor (SUR1, SUR2A, or SUR2B) reconstituted an inwardly rectifying, ATP-sensitive K+channel that was inhibited by glibenclamide (2, 15–17). Here we report the isolation of a rat homolog of mouse SUR2B (denoted rSUR2B) from a rat kidney cDNA library. The rSUR2B sequence contains a 4,635-bp open reading frame that encodes a 1,545-amino acid polypeptide, showing 67% shared identity with SUR1 (a pancreatic β-cell isoform) and 98% with both SUR2A (a brain isoform) and SUR2B (a vascular smooth muscle isoform). Consistent with the predicted structures of other members of the ATP-binding cassette (ABC) superfamily, the sequence of rSUR2B contains 17 putative membrane-spanning segments. Also, predicted Walker A and B consensus binding motifs, present in other ABC members, are conserved in the rSUR2B sequence. RT-PCR revealed that rSUR2B is widely expressed in various rat tissues including brain, colon, heart, kidney, liver, skeletal muscle, and spleen. The intrarenal distribution of the rSUR2B transcript was investigated using RT-PCR and Southern blot of microdissected tubules. The rSUR2B transcript was detected in proximal tubule, cortical thick ascending limb, distal collecting tubule, cortical collecting duct, and outer medullary collecting duct, but not medullary thick ascending limb. This distal distribution overlaps with that of ROMK. Coexpression of rSUR2B with ROMK2 cRNA (in 1:10 ratio) in Xenopus laevis oocytes resulted in whole cell Ba2+-sensitive K+ currents that were inhibited by glibenclamide (50% inhibition with 0.2 mM glibenclamide). In contrast, rSUR2B did not confer significant glibenclamide sensitivity to oocytes coinjected with ROMK1 or ROMK3. The interaction between ROMK2 and rSUR2B was further studied by coimmunoprecipitation of in vitro translated rSUR2B and ROMK2. In agreement with the functional data, the rSUR2B protein was coimmunoprecipitated with ROMK2 in the ROMK2-rSUR2B cotranslated samples. Our data demonstrate that ROMK2, but not ROMK1 and ROMK3, can interact with rSUR2B to confer a sulfonylurea-sensitive K+ channel, implicating SUR proteins in forming and regulating renal ATP-sensitive K+ channels. The ROMK isoform specificity of glibenclamide effects suggests that the NH2 terminus of the ROMK protein mediates rSUR2B-ROMK2 interactions.


1991 ◽  
Vol 261 (6) ◽  
pp. F1080-F1087 ◽  
Author(s):  
Y. Terada ◽  
T. Moriyama ◽  
B. M. Martin ◽  
M. A. Knepper ◽  
A. Garcia-Perez

Microlocalization of mRNA coding for the guanylyl cyclase-coupled atrial natriuretic factor (ANF) receptor was carried out in the rat kidney. We used a combination of reverse transcription and polymerase chain reaction (RT-PCR) in individual microdissected renal tubule segments, glomeruli, and vasa recta bundles. Relative quantitation of the resulting amplified cDNA utilized densitometry of autoradiograms from Southern blots probed with a specific 32P-labeled probe. Among renal tubule segments, the largest signal was found in the terminal inner medullary collecting duct (IMCD). Slightly smaller signals were found in the initial IMCD and in loop of Henle segments from the inner medulla. Readily detectable signals were also seen in the following segments (in descending order): cortical collecting duct, proximal convoluted tubule, medullary thick ascending limb, cortical thick ascending limb, distal convoluted tubule, and outer medullary collecting duct. Large signals were also detected in glomeruli and in vasa recta bundles from the inner stripe of the outer medulla. Based on these results, we conclude that 1) renal microlocalization of specific mRNAs coding for hormone receptors is feasible through application of the RT-PCR procedure in microdissected renal tubules and vascular elements, and 2) the gene for the guanylyl cyclase-coupled ANF receptor is broadly expressed along the nephron, raising the possibility that multiple sites of ANF action are present.


2001 ◽  
Vol 12 (7) ◽  
pp. 1327-1334 ◽  
Author(s):  
KATSUKI KOBAYASHI ◽  
SHINICHI UCHIDA ◽  
SHUKI MIZUTANI ◽  
SEI SASAKI ◽  
FUMIAKI MARUMO

Abstract. CLC-K2, a kidney-specific member of the CLC chloride channel family, is thought to play an important role in the transepithelial Cl- transport in the kidney. This consensus was first reached shortly after it was demonstrated that the mutations of the human CLCNKB gene resulted in Bartter's syndrome type III. To clarify the pathogenesis, the exact intrarenal and cellular localization of CLC-K2 by immunohistochemistry of the Clcnk1-/- mouse kidney were investigated by use of an anti-CLC-K antibody that recognized both CLC-K1 and CLC-K2. CLC-K2 is expressed in the thick ascending limb of Henle's loop and distal tubules, where it is localized to the basolateral membranes. The localization of CLC-K2 to these nephron segments strongly implies that CLC-K2 confers the basolateral chloride conductance in the thick ascending limb of Henle's loop and distal tubules, where Cl- is taken up by the bumetanide-sensitive Na-K-2Cl cotransporter or the thiazide-sensitive Na-Cl cotransporter at the apical membranes. CLC-K2 expression was also shown to extend into the connecting tubule in the basolateral membrane. CLC-K2 was found in basolateral membranes of the type A intercalated cells residing along the collecting duct. This localization strongly suggests that CLC-K2 confers the basolateral conductance in the type A intercalated cells where Cl- is taken up by the anion exchanger in exchange for HCO3- at the basolateral membranes. These aspects of CLC-K2 localization suggest that CLC-K2 is important in Cl- transport in the distal nephron segments.


1995 ◽  
Vol 269 (3) ◽  
pp. F449-F457 ◽  
Author(s):  
L. H. Chow ◽  
S. Subramanian ◽  
G. J. Nuovo ◽  
F. Miller ◽  
E. P. Nord

Three subtypes of endothelin (ET) receptors have been identified by cDNA cloning, namely ET-RA, ET-RB, and ET-RC. In the current study the precise cellular distribution of the ET receptor subtypes in the renal medulla was explored by detecting the corresponding polymerase chain reaction (PCR)-amplified cDNAs by in situ reverse transcription (RT)-PCR. The PCR-amplified cDNAs were detected either by direct incorporation using digoxigenin-dUTP (dig-dUTP) as a nucleotide substrate in the PCR reaction or by in situ hybridization with the dig-dUTP-labeled probe. ET-RB mRNA was detected exclusively in the epithelial cells of the inner and outer medullary collecting duct. In contrast, ET-RA message was observed primarily in interstitial cells and pericytes of the vasae rectae in the outer and inner medulla. Southern blot analysis of PCR-amplified cDNAs reverse transcribed from extracted RNA of rat renal medulla confirmed the specificity of the RT-PCR products. ET-RC mRNA was not detected. We conclude that ET-RB is the major ET receptor found in rat renal medulla and is expressed exclusively on inner medullary collecting duct cells. The pattern of ET receptor mRNA expression described suggests different physiological actions for ET on the diverse cellular structures of the renal medulla.


1995 ◽  
Vol 269 (4) ◽  
pp. F461-F468 ◽  
Author(s):  
F. C. Brosius ◽  
K. Nguyen ◽  
A. K. Stuart-Tilley ◽  
C. Haller ◽  
J. P. Briggs ◽  
...  

Chloride/base exchange activity has been detected in every mammalian nephron segment in which it has been sought. However, in contrast to the Cl-/HCO3- exchanger AE1 in type A intercalated cells, localization of AE2 within the kidney has not been reported. We therefore studied AE2 expression in rat kidney. AE2 mRNA was present in cortex, outer medulla, and inner medulla. Semiquantitative polymerase chain reaction of cDNA from microdissected tubules revealed AE2 cDNA levels as follows [copies of cDNA derived per mm tubule (+/- SE)]: proximal convoluted tubule, 688 +/- 161; proximal straight tubule, 652 +/- 189; medullary thick ascending limb, 1,378 +/- 226; cortical thick ascending limb, 741 +/- 24; cortical collecting duct, 909 +/- 71; and outer medullary collecting duct, 579 +/- 132. AE2 cDNA was also amplified in thin limbs and in inner medullary collecting duct. AE2 polypeptide was detected in all kidney regions. AE2 mRNA and protein were also detected in several renal cell lines. The data are compatible with the postulated roles of AE2 in maintenance of intracellular pH and chloride concentration and with its possible participation in transepithelial transport.


1996 ◽  
Vol 271 (4) ◽  
pp. C1303-C1315 ◽  
Author(s):  
F. Ciampolillo ◽  
D. E. McCoy ◽  
R. B. Green ◽  
K. H. Karlson ◽  
A. Dagenais ◽  
...  

Amiloride-sensitive, electrogenic Na+ absorption across the distal nephron plays a vital role in regulating extracellular fluid volume and blood pressure. Recently, two amiloride-sensitive, Na(+)-conducting ion channel cDNAs were cloned. One, an epithelial Na(+)-selective channel (ENaC), is responsible for Na+ absorption throughout the distal nephron. The second, a guanosine 3',5'-cyclic monophosphate (cGMP)-inhibitable cation channel, is conductive to Na+ and Ca2+ and contributes to Na+ absorption across the inner medullary collecting duct (IMCD). As a first step toward understanding the segment-specific contributions(s) of cGMP-gated cation channels and ENaC to Na+ and Ca2+ uptake along the nephron, we used in situ reverse transcription-polymerase chain reaction (RT-PCR) hybridization, solution-phase RT-PCR, and Western blot analysis to examine the nephron and cell-specific expression of these channels in mouse kidney cell lines and/or dissected nephron segments. cGMP-gated cation channel mRNA was detected in proximal tubule, medullary thick ascending limb (mTAL), distal convoluted tubule (DCT), cortical collecting duct (CCD), outer medullary collecting duct (OMCD), and IMCD. cGMP-gated cation channel protein was detected in DCT, CCD, and IMCD cell lines. These observations suggest that hormones that modulate intracellular cGMP levels may regulate Na+, and perhaps Ca2+, uptake throughout the nephron. mRNA for alpha-mENaC, a subunit of the mouse ENaC, was detected in mTAL, DCT, CCD, OMCD, and IMCD. Coexpression of alpha-mENaC and cGMP-gated cation channel mRNAs in mTAL, DCT, CCD, OMCD, and IMCD suggests that both channels may contribute to Na+ absorption in these nephron segments.


1989 ◽  
Vol 256 (2) ◽  
pp. F366-F369 ◽  
Author(s):  
D. Brown ◽  
E. J. Sorscher ◽  
D. A. Ausiello ◽  
D. J. Benos

Amiloride-sensitive Na+ channels were localized in semithin frozen sections of rat renal medullary collecting ducts, using polyclonal antibodies directed against purified bovine kidney Na+ channel protein. The apical plasma membrane of collecting duct principal cells was heavily stained by indirect immunofluorescence, whereas intercalated cells were negative. Basolateral plasma membranes of both cell types were unstained, as were subapical vesicles in the cytoplasm of these cells. In the thick ascending limb of Henle, some scattered granular fluorescence was seen in the cytoplasm and close to the apical pole of epithelial cells, suggesting the presence of antigenic sites associated with some membrane domains in these cells. No staining was detected in thin limbs of Henle, or in proximal tubules in the outer medulla. These results show that amiloride-sensitive sodium channels are located predominantly on the apical plasma membrane of medullary collecting duct principal cells, the cells that are involved in Na+ homeostasis in this region of the kidney.


2010 ◽  
Vol 299 (6) ◽  
pp. F1473-F1485 ◽  
Author(s):  
Daniel Ackermann ◽  
Nikolay Gresko ◽  
Monique Carrel ◽  
Dominique Loffing-Cueni ◽  
Daniel Habermehl ◽  
...  

Aldosterone and corticosterone bind to mineralocorticoid (MR) and glucocorticoid receptors (GR), which, upon ligand binding, are thought to translocate to the cell nucleus to act as transcription factors. Mineralocorticoid selectivity is achieved by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) that inactivates 11β-hydroxy glucocorticoids. High expression levels of 11β-HSD2 characterize the aldosterone-sensitive distal nephron (ASDN), which comprises the segment-specific cells of late distal convoluted tubule (DCT2), connecting tubule (CNT), and collecting duct (CD). We used MR- and GR-specific antibodies to study localization and regulation of MR and GR in kidneys of rats with altered plasma aldosterone and corticosterone levels. In control rats, MR and GR were found in cell nuclei of thick ascending limb (TAL), DCT, CNT, CD cells, and intercalated cells (IC). GR was also abundant in cell nuclei and the subapical compartment of proximal tubule (PT) cells. Dietary NaCl loading, which lowers plasma aldosterone, caused a selective removal of GR from cell nuclei of 11β-HSD2-positive ASDN. The nuclear localization of MR was unaffected. Adrenalectomy (ADX) resulted in removal of MR and GR from the cell nuclei of all epithelial cells. Aldosterone replacement rapidly relocated the receptors in the cell nuclei. In ASDN cells, low-dose corticosterone replacement caused nuclear localization of MR, but not of GR. The GR was redistributed to the nucleus only in PT, TAL, early DCT, and IC that express no or very little 11β-HSD2. In ASDN cells, nuclear GR localization was only achieved when corticosterone was replaced at high doses. Thus ligand-induced nuclear translocation of MR and GR are part of MR and GR regulation in the kidney and show remarkable segment- and cell type-specific characteristics. Differential regulation of MR and GR may alter the level of heterodimerization of the receptors and hence may contribute to the complexity of corticosteroid effects on ASDN function.


Sign in / Sign up

Export Citation Format

Share Document