Variable open-loop gain in the control of thermogenesis in cold-exposed rabbits

1980 ◽  
Vol 48 (3) ◽  
pp. 495-499 ◽  
Author(s):  
J. T. Stitt

We have previously demonstrated a multiplicative interaction between mean skin temperature (Tsk) and hypothalamic temperature (Thy) in the control of thermogenesis in cold exposed rabbits. Such a model predicts that open-loop gain will not be constant, but will vary according to the direction and degree of Thy displacements and to the prevailing level of Tsk when Thy is altered. Open-loop gain was calculated from steady-state displacements in body temperature induced by sustained step displacements in Thy. Hypothalamic temperature of rabbits was clamped at various levels ranging from 2 degrees C above to 3 degrees C below normal Thy and the resulting changes in rectal temperature attained at steady state were recorded. Experiments were conducted at ambient temperatures (Ta) of 2 degrees and 15 degrees C. Open-loop gain in response to hypothalamic heating was always greater than that obtained in response to equivalent levels of hypothalamic cooling. Furthermore, at lower levels of Tsk (Ta = 2 degrees C) open-loop gain was greater for all levels of Thy displacement when compared to that measured at higher levels of Tsk (Ta = 15 degrees C).

1991 ◽  
Vol 77 (1) ◽  
pp. 41-47
Author(s):  
A. J. Allsopp ◽  
Kerry A. Poole

AbstractThe effects of hand immersion on body temperature have been investigated in men wearing impermeable NBC clothing. Six men worked continuously at a rate of approximately 490 J.sec−1 in an environmental temperature of 30°C. Each subject was permitted to rest for a period of 20 minutes when their aural temperature reached 37.5°C, and again on reaching 38°C, and for a third time on reaching 38.5°C (three rest periods in total). Each subject completed three experimental conditions whereby, during the rest periods they either: a.Did not immerse their hands (control).b.Immersed both hands in a water bath set at 25°c.c.Immersed both hands in water at 10°C.Physiological measures of core temperature, skin temperature and heart rate were recorded at intervals throughout the experiment.Measures of mean aural temperature and mean skin temperature were significantly (P<0.05) reduced if hands were immersed during these rest periods, compared to non immersion. As a result, the total work time of subjects was extended when in the immersed conditions by some 10–20 minutes within the confines of the protocol.It is concluded that this technique of simple hand immersion may be effective in reducing heat stress where normal routes to heat loss are compromised.


2017 ◽  
Vol 12 (5) ◽  
pp. 662-667 ◽  
Author(s):  
Matthijs T.W. Veltmeijer ◽  
Dineke Veeneman ◽  
Coen C.C.W. Bongers ◽  
Mihai G. Netea ◽  
Jos W. van der Meer ◽  
...  

Purpose:Exercise increases core body temperature (TC) due to metabolic heat production. However, the exercise-induced release of inflammatory cytokines including interleukin-6 (IL-6) may also contribute to the rise in TC by increasing the hypothalamic temperature set point. This study investigated whether the exercise-induced increase in TC is partly caused by an altered hypothalamic temperature set point.Methods:Fifteen healthy, active men age 36 ± 14 y were recruited. Subjects performed submaximal treadmill exercise in 3 randomized test conditions: (1) 400 mg ibuprofen and 1000 mg acetaminophen (IBU/APAP), (2) 1000 mg acetaminophen (APAP), and (3) a control condition (CTRL). Acetaminophen and ibuprofen were used to block the effect of IL-6 at a central and peripheral level, respectively. TC, skin temperature, and heart rate were measured continuously during the submaximal exercise tests.Results:Baseline values of TC, skin temperature, and heart rate did not differ across conditions. Serum IL-6 concentrations increased in all 3 conditions. A significantly lower peak TC was observed in IBU/APAP (38.8°C ± 0.4°C) vs CTRL (39.2°C ± 0.5°C, P = .02) but not in APAP (38.9°C ± 0.4°C) vs CTRL. Similarly, a lower ΔTC was observed in IBU/APAP (1.7°C ± 0.3°C) vs CTRL (2.0°C ± 0.5°C, P < .02) but not in APAP (1.7°C ± 0.5°C) vs CTRL. No differences were observed in skin temperature and heart-rate responses across conditions.Conclusions:The combined administration of acetaminophen and ibuprofen resulted in an attenuated increase in TC during exercise compared with a CTRL. This observation suggests that a prostaglandin-E2-induced elevated hypothalamic temperature set point may contribute to the exercise-induced rise in TC.


2019 ◽  
Vol 96 (9) ◽  
pp. 896-899
Author(s):  
S. M. Rasinkin ◽  
Viktoriya V. Petrova ◽  
M. M. Bogomolova ◽  
E. P. Gorbaneva ◽  
A. G. Kamchatnikov ◽  
...  

The article presents results of a study of the thermal stability in athletes during specific activities in hot climate. This happened on a training camp at the sports center, located in the district Sredneakhtubinsky of the Volgograd region with the registration of climate indices. The study was conducted in July at an effective temperature +44,6° - +45,4°C. The study involved 6 athletes, representatives of athletics, sports category on the following candidate for master of sports. During the endurance, training (cross) in athletes showed a significant increase in the rectal temperature (RT), average skin temperature (AST), average body temperature (ABT) against the background of the gain in the heart rate. During the training as "repeated cuts", the increase in indices of the thermal state in athletes also persisted, but their values were significantly lower than on the cross. The comparison of the dynamics of indices of the thermal state with the level of sports skills of each athlete showed the following features: the smallest gain in the rectal temperature, average skin temperature and average body temperature observed in cross-country race was observed in sportsman, whose level of training coach the evaluated as a minimal in the group. The highest gain in indices of the thermal state at the cross happened in the athlete with an average fitness level. Optimal gain in such indices as RT, AST and ABT was observed in the most prepared athlete. There was revealed a high level of adaptationness of athletes to the exposure to high temperatures. This is confirmed by the data of the evaluation of dynamics of subjective evaluation of warmth sense modality in athletes during the study period.


2019 ◽  
Vol 44 (1) ◽  
pp. 22-30 ◽  
Author(s):  
Keiji Hayashi ◽  
Nozomi Ito ◽  
Yoko Ichikawa ◽  
Yuichi Suzuki

Food intake increases metabolism and body temperature, which may in turn influence ventilatory responses. Our aim was to assess the effect of food intake on ventilatory sensitivity to rising core temperature during exercise. Nine healthy male subjects exercised on a cycle ergometer at 50% of peak oxygen uptake in sessions with and without prior food intake. Ventilatory sensitivity to rising core temperature was defined by the slopes of regression lines relating ventilatory parameters to core temperature. Mean skin temperature, mean body temperature (calculated from esophageal temperature and mean skin temperature), oxygen uptake, carbon dioxide elimination, minute ventilation, alveolar ventilation, and tidal volume (VT) were all significantly higher at baseline in sessions with food intake than without food intake. During exercise, esophageal temperature, mean skin temperature, mean body temperature, carbon dioxide elimination, and end-tidal CO2 pressure were all significantly higher in sessions with food intake than without it. By contrast, ventilatory parameters did not differ between sessions with and without food intake, with the exception of VT during the first 5 min of exercise. The ventilatory sensitivities to rising core temperature also did not differ, with the exception of an early transient effect on VT. Food intake increases body temperature before and during exercise. Other than during the first 5 min of exercise, food intake does not affect ventilatory parameters during exercise, despite elevation of both body temperature and metabolism. Thus, with the exception of an early transient effect on VT, ventilatory sensitivity to rising core temperature is not affected by food intake.


1959 ◽  
Vol 14 (1) ◽  
pp. 43-45 ◽  
Author(s):  
M. B. Kreider ◽  
P. F. Iampietro ◽  
E. R. Buskirk ◽  
David E. Bass

Effects of continuous cold stress on 24-hour patterns of body temperature were studied in five men. Cold stress consisted in living at 15.6℃ (60℉) for 14 days wearing only shorts. The cold period was preceded and followed by 2 weeks at 26.7℃ (80℉). Activity (minimal) and diet were the same for all periods. One blanket was used at night. Rectal temperature (Tr) and skin temperature (Ts) were measured. Tr during sleep fell more rapidly and to lower values during cold exposure (35.6℃) than during the control period (36.1℃). Ts during sleep was slightly lower in the cold than in the control period; also, Ts did not exhibit the gradual drop characteristic of sleep in the control period. Comparison of Tr and Ts between early and later cold days revealed the following differences: a) nocturnal Tr fell to lower levels on the later cold days; b) nocturnal toe temperatures were 15℃ (27℉) higher on the later cold days. The arch temperatures followed the same pattern as the toes. No significant differences were found in daytime temperatures between early and later cold days. The data suggest that evidence for acclimatization to cold in terms of altered body temperature responses may be fruitfully sought in responses during rewarming and/or sleep. Submitted on September 19, 1958


1963 ◽  
Vol 18 (6) ◽  
pp. 1234-1238 ◽  
Author(s):  
L. G. C. E. Pugh

Body temperature and respiratory experiments are reported on a Nepalese pilgrim who survived, uninjured, 4 days of exposure at 15,000–17,500 ft in midwinter, wearing only light clothing and no shoes or gloves. His resistance to cold depended on elevation of metabolism and, unlike tolerance of immersion in cold water, was not related to subcutaneous fat thickness. He slept soundly in spite of the cold and so did not become exhausted. In 3–4-hr experiments at o C (clothed), rectal temperature and skin temperature over the trunk showed only minor changes; hand and foot temperatures did not fall below 10–13 C. Maintenance of body temperature was accounted for by elevation of metabolism. survival in cold Submitted on February 19, 1963


1960 ◽  
Vol 55 (3) ◽  
pp. 311-315
Author(s):  
R. B. Symington

The influence of fleece on thermoregulation in German Merino ewes was investigated in Rhodesia. Comparative heat tolerances of Persian Blackhead, indigenous Native and shorn and unshorn Merino ewes were obtained during the hottest month of the year in Northern Rhodesia. The main thermolytic responses in unshorn, partially shorn and completely shorn Merino ewes were measured at 7.0 a.m.; 10.0 a.m.; 1.0 p.m. and 4.0 p.m. during April in Southern Rhodesia.1. Unshorn Merino ewes showed more and shorn Merino ewes less effective body temperature regulation than Persian or Native ewes. High heat tolerance in unshorn Merinos was due primarily to insulation by the fleece and not to more efficient physiological thermolysis than in hair breeds. No ewe showed signs of undue thermal stress and feed intake was not affected by heat.2. Increases in rectal temperature and respiratory rate between 7.0 a.m. and 1.0 p.m. of Merinos in Southern Rhodesia were related inversely to fleece length. Body temperature did not differ significantly at 1.0 p.m. owing to differential rates of increase in respiratory rate.3. Magnitude of the diurnal fluctuation in skin temperature was also related inversely to fleece length. Partially shorn ewes, however, began with and maintained highest skin temperature through the heat of the day. In all groups skin temperature fell after 10.0 a.m. although ambient temperature continued to rise. This fall could not be attributed to sweating since moisture secretion declined simultaneously.


1976 ◽  
Vol 54 (2) ◽  
pp. 101-106 ◽  
Author(s):  
Q. J. Pittman ◽  
W. L. Veale ◽  
K. E. Cooper

Prostaglandins appear to be mediators, within the hypothalamus, of heat production and conservation during fever. We have investigated a possible role of prostaglandins in the nonfebrile rabbit during thermoregulation in the cold. Shorn rabbits were placed in an environment of 20 °C, and rectal and ear skin temperatures, shivering and respiratory rates were measured. A continuous intravenous infusion of leucocyte pyrogen was given to establish a constant fever of approximately 1 °C, and after observation of a stable febrile temperature for 90 min, a single injection of 300 mg of sodium salicylate, followed by a 1.5 mg/min infusion was then given. After the salicylate infusion was begun, rectal temperature began to fall, and reached nonfebrile levels within 90 min. Shivering activity ceased, respiratory rates increased, and in two animals, ear skin temperature increased. When these same rabbits were placed in an environment of 10 °C, at a time they were not febrile, and an identical amount of salicylate was given, rectal and ear skin temperatures, shivering and respiratory rates did not change. These results indicate that prostaglandins do not appear to be involved in heat production and conservation in the nonfebrile rabbit.


1959 ◽  
Vol 52 (3) ◽  
pp. 305-312 ◽  
Author(s):  
W. Bianca

1. Three calves were exposed in a climatic room to an environment of 40° C. dry-bulb and 38° C. wet-bulb temperature for up to 110 min. each day for 1-2 weeks.2. These exposures produced progressive changes in the physiological reactions of the animals to heat:(a) Rectal temperature and skin temperature (for a given time of exposure) declined. In consequence there was a marked increase in the tolerance time, i.e. in the time for which the animals could withstand the hot environment before reaching a rectal temperature of 42° C.(b) Respiratory rate rose earlier and assumed higher levels (for given levels of body temperature).(c) Heart rate decreased markedly.3. These changes are discussed in relation to heat loss and heat production and have been interpreted as reflecting chiefly a reduction in the metabolic heat production of the animals.


2021 ◽  
Vol 16 (1) ◽  
pp. 103-109
Author(s):  
Gavin Cowper ◽  
Martin Barwood ◽  
Stuart Goodall

Purpose: Rowers can be in marshaling areas for up to 20 to 25 min before the start of a race, which likely negates any benefits of an active warm-up, especially in cold environments. It is unknown if using a heated jacket following a standardized rowing warm-up can improve 2000-m rowing performance. Methods: On 2 separate occasions, 10 trained male rowers completed a standardized rowing warm-up, followed by 25 min of passive rest before a 2000-m rowing time trial on a rowing ergometer. Throughout the passive rest, the participants wore either a standardized tracksuit top (CON) or an externally heated jacket (HEAT). The trials, presented in a randomized crossover fashion, were performed in a controlled environment (temperature 8°C, humidity 50%). Rowing time-trial performance, core body temperature, and mean skin temperature, along with perceptual variables, were measured. Results: During the 25-min period, core body temperature increased in HEAT and decreased in CON (Δ0.54°C [0.74°C] vs −0.93°C [1.14°C]; P = .02). Additionally, mean skin temperature (30.22°C [1.03°C] vs 28.86°C [1.07°C]) was higher in HEAT versus CON (P < .01). In line with the physiological data, the perceptual data confirmed that participants were more comfortable in HEAT versus CON, and subsequently, rowing performance was improved in HEAT compared with CON (433.1 [12.7] s vs 437.9 [14.4] s, P < .01). Conclusion: The data demonstrate that an upper-body external heating garment worn following a warm-up can improve rowing performance in a cool environment.


Sign in / Sign up

Export Citation Format

Share Document