Muscle accounts for glucose disposal but not blood lactate appearance during exercise after acclimatization to 4,300 m

1992 ◽  
Vol 72 (6) ◽  
pp. 2435-2445 ◽  
Author(s):  
G. A. Brooks ◽  
E. E. Wolfel ◽  
B. M. Groves ◽  
P. R. Bender ◽  
G. E. Butterfield ◽  
...  

We hypothesized that the increased blood glucose disappearance (Rd) observed during exercise and after acclimatization to high altitude (4,300 m) could be attributed to net glucose uptake (G) by the legs and that the increased arterial lactate concentration and rate of appearance (Ra) on arrival at altitude and subsequent decrease with acclimatization were caused by changes in net muscle lactate release (L). To evaluate these hypotheses, seven healthy males [23 +/- 2 (SE) yr, 72.2 +/- 1.6 kg], on a controlled diet were studied in the postabsorptive condition at sea level, on acute exposure to 4,300 m, and after 3 wk of acclimatization to 4,300 m. Subjects received a primed-continuous infusion of [6,6–D2]glucose (Brooks et al., J. Appl. Physiol. 70: 919–927, 1991) and [3–13C]lactate (Brooks et al., J. Appl. Physiol. 71:333–341, 1991) and rested for a minimum of 90 min, followed immediately by 45 min of exercise at 101 +/- 3 W, which elicited 51.1 +/- 1% of the sea level peak O2 uptake (65 +/- 2% of both acute altitude and acclimatization peak O2 uptake). Glucose and lactate arteriovenous differences across the legs and arms and leg blood flow were measured. Leg G increased during exercise compared with rest, at altitude compared with sea level, and after acclimatization. Leg G accounted for 27–36% of Rd at rest and essentially all glucose Rd during exercise. A shunting of the blood glucose flux to active muscle during exercise at altitude is indicated. With acute altitude exposure, at 5 min of exercise L was elevated compared with sea level or after acclimatization, but from 15 to 45 min of exercise the pattern and magnitude of L from the legs varied and followed neither the pattern nor the magnitude of responses in arterial lactate concentration or Ra. Leg L accounted for 6–65% of lactate Ra at rest and 17–63% during exercise, but the percent Ra from L was not affected by altitude. Tracer-measured lactate extraction by legs accounted for 10–25% of lactate Rd at rest and 31–83% during exercise. Arms released lactate under all conditions except during exercise with acute exposure to high altitude, when the arms consumed lactate. Both active and inactive muscle beds demonstrated simultaneous lactate extraction and release. We conclude that active skeletal muscle is the predominant site of glucose disposal during exercise and at high altitude but not the sole source of blood lactate during exercise at sea level or high altitude.

1991 ◽  
Vol 71 (1) ◽  
pp. 333-341 ◽  
Author(s):  
G. A. Brooks ◽  
G. E. Butterfield ◽  
R. R. Wolfe ◽  
B. M. Groves ◽  
R. S. Mazzeo ◽  
...  

We hypothesized that the increased exercise arterial lactate concentration on arrival at high altitude and the subsequent decrease with acclimatization were caused by changes in blood lactate flux. Seven healthy men [age 23 +/- 2 (SE) yr, wt 72.2 +/- 1.6 kg] on a controlled diet were studied in the postabsorptive condition at sea level, on acute exposure to 4,300 m, and after 3 wk of acclimatization to 4,300 m. Subjects received a primed-continuous infusion of [6,6–2D]glucose (Brooks et al. J. Appl. Physiol. 70:919–927, 1991) and [3–13C]lactate and rested for a minimum of 90 min followed immediately by 45 min of exercise at 101 +/- 3 W, which elicited 51.1 +/- 1% of the sea level peak O2 consumption (VO2peak; 65 +/- 2% of both acute altitude and acclimatization). During rest at sea level, lactate appearance rate (Ra) was 0.52 +/- 0.03 mg.kg-1.min-1; this increased sixfold during exercise to 3.24 +/- 0.19 mg.kg-1.min-1. On acute exposure, resting lactate Ra rose from sea level values to 2.2 +/- 0.2 mg.kg-1.min-1. During exercise on acute exposure, lactate Ra rose to 18.6 +/- 2.9 mg.kg-1.min-1. Resting lactate Ra after acclimatization (1.77 +/- 0.25 mg.kg-1.min-1) was intermediate between sea level and acute exposure values. During exercise after acclimatization, lactate Ra (9.2 +/- 0.7 mg.kg-1.min-1) rose from resting values but was intermediate between sea level and acute exposure values. The increased exercise arterial lactate concentration response on arrival at high altitude and subsequent decrease with acclimatization are due to changes in blood lactate appearance.(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 76 (2) ◽  
pp. 610-615 ◽  
Author(s):  
R. S. Mazzeo ◽  
G. A. Brooks ◽  
G. E. Butterfield ◽  
A. Cymerman ◽  
A. C. Roberts ◽  
...  

We examined the extent to which epinephrine influences blood lactate adjustments to exercise during both acute (AC) and chronic (CH) high-altitude exposure. Eleven male sea level residents were divided into a control group (n = 5) receiving a placebo or a drug group (n = 6) receiving 240 mg/day of propranolol. All subjects were studied at rest and during 45 min of submaximal exercise (approximately 50% of sea level maximal O2 uptake) at sea level (SL) and within 4 h of exposure to and after 3 wk residence at 4,300 m (summit of Pikes Peak). Blood samples were collected from the femoral artery for epinephrine and lactate concentration. Exercising blood lactate concentration was significantly different across all altitude conditions such that AC > CH > SL (P < 0.05). For a given arterial O2 saturation, mean exercising blood lactates were lower for the beta-blocked group compared with controls; however, both groups demonstrated similar patterns across all conditions. Epinephrine levels during exercise followed a similar pattern to that of lactate, averaging 0.67, 0.43, and 0.29 ng/ml for AC, CH, and SL, respectively. The correlation between lactate and epinephrine was 0.93 and 0.84 for control and beta-blocked subjects, respectively. Whereas during exercise epinephrine was consistently higher for the beta-blocked group than controls, this difference was only significant during CH exposure. The epinephrine response was related to the extent of hypoxia in both groups.(ABSTRACT TRUNCATED AT 250 WORDS)


1963 ◽  
Vol 26 (4) ◽  
pp. 555-566 ◽  
Author(s):  
P. C. B. MACKINNON ◽  
M. E. MONK-JONES ◽  
K. FOTHERBY

SUMMARY 1. Four men and three women ascended by télépherique and helicopter from 1000 to 4333 m. where they remained for 23 days. 2. Measurements of urinary 17-hydroxycorticosteroids, 17-oxosteroids, pregnanediol and pregnanetriol and circulating eosinophils were made at sea level and at high altitude. 3. An attempt was also made to measure changes in emotional activity by means of the palmar sweat index (PSI). This index was assessed at intervals throughout the day at sea level and at high altitude, and in response to adrenocorticotrophic hormone (ACTH) and a self-imposed stress. 4. Within 24 hr. of acute exposure to high altitude urinary 17-hydroxycorticosteroids increased whilst circulating eosinophils decreased; by the 5th day both were returning to sea-level values. The output of 17-oxosteroids was lower by the 5th day at high altitude and subsequently increased; pregnanediol and pregnanetriol levels remained unchanged. 5. PSIs throughout the day become progressively lower as the length of stay at altitude increased. The response to ACTH at sea level and high altitude appeared to be similar but the response to a self-imposed stress was longer in duration at high altitude than at sea level.


1989 ◽  
Vol 67 (2) ◽  
pp. 756-764 ◽  
Author(s):  
S. G. Gregg ◽  
R. S. Mazzeo ◽  
T. F. Budinger ◽  
G. A. Brooks

We evaluated whether elevated blood lactate concentration during exercise in anemia is the result of elevated production or reduced clearance. Female Sprague-Dawley rats were made acutely anemic by exchange transfusion of plasma for whole blood. Hemoglobin and hematocrit were reduced 33%, to 8.6 +/- 0.4 mg/dl and 26.5 +/- 1.1%, respectively. Blood lactate kinetics were studied by primed continuous infusion of [U-14C]lactate. Blood flow distribution during rest and exercise was determined from injection of 153Gd- and 113Sn-labeled microspheres. Resting blood glucose (5.1 +/- 0.2 mM) and lactate (1.9 +/- 0.02 mM) concentrations were not different in anemic animals. However, during exercise blood glucose was lower in anemic animals (4.0 +/- 0.2 vs. 4.6 +/- 0.1 mM) and lactate was higher (6.1 +/- 0.4 vs. 2.3 +/- 0.5 mM). Blood lactate disposal rates (turnover measured with recyclable tracer, Ri) were not different at rest and averaged 136 +/- 5.8 mumol.kg-1.min-1. Ri was significantly elevated in both control (260.9 +/- 7.1 mumol.kg-1.min-1) and anemic animals (372.6 +/- 8.6) during exercise. Metabolic clearance rate (MCR = Ri/[lactate]) did not differ during rest (151 +/- 8.2 ml.kg-1.min-1); MCR was reduced more by exercise in anemic animals (64.3 +/- 3.8) than in controls (129.2 +/- 4.1). Plasma catecholamine levels were not different in resting rats, with pooled mean values of 0.45 +/- 0.1 and 0.48 +/- 0.1 ng/ml for epinephrine (E) and norepinephrine (NE), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)


1981 ◽  
Vol 51 (4) ◽  
pp. 840-844 ◽  
Author(s):  
B. A. Stamford ◽  
A. Weltman ◽  
R. Moffatt ◽  
S. Sady

The purpose of this study was to determine the effects of resting and exercise recovery above [70% of maximum O2 uptake (VO2 max)] and below [40% of VO2 max] anaerobic threshold (AT) on blood lactate disappearance following maximal exercise. Blood lactate concentrations at rest (0.9 mM) and during exercise at 40% (1.3 mM) and 70% (3.5 mM) of VO2 max without preceding maximal exercise were determined on separate occasions and represented base lines for each condition. The rate of blood lactate disappearance from peak values was ascertained from single-component exponential curves fit for each individual subject for each condition using both the determined and resting base lines. When determined base lines were utilized, there were no significant differences in curve parameters between the 40 and 70% of VO2 max recoveries, and both were significantly different from the resting recovery. When a resting base line (0.9 mM) was utilized for all conditions, 40% of VO2 max demonstrated a significantly faster half time than either 70% of VO2 max or resting recovery. No differences were found between 70% of VO2 max and resting recovery. It was concluded that interpretation of the effectiveness of exercise recovery above and below AT with respect to blood lactate disappearance is influenced by the base-line blood lactate concentration utilized in the calculation of exponential half times.


1990 ◽  
Vol 258 (1) ◽  
pp. E203-E211 ◽  
Author(s):  
L. P. Turcotte ◽  
A. S. Rovner ◽  
R. R. Roark ◽  
G. A. Brooks

To evaluate the role played by gluconeogenesis in blood glucose homeostasis, female Sprague-Dawley rats were injected with mercaptopicolinic acid (MPA), a gluconeogenic inhibitor. Glucose kinetics were assessed by primed, continuous infusion of [U-14C]- and [6(-3)H]glucose via an indwelling jugular catheter at rest and during submaximal exercise at 13.4 m/min on level grade. Blood samples were taken from carotid catheters and analyzed for glucose and lactate concentrations and specific activities. Tissue glycogen samples were obtained from rats after exercise as well as from unexercised animals. When compared with the sham-injected animals, MPA-treated animals had 22% lower (5.92 +/- 0.36 vs. 7.62 +/- 0.21 mM) and 44% higher (1.90 +/- 0.11 vs. 1.32 +/- 0.09 mM) resting arterial glucose and lactate concentrations, respectively. Resting glucose appearance (Ra) rates were 20% lower in the MPA-treated animals (57.2 +/- 7.5 mumol.kg-1.min-1) than in the sham-injected animals (71.1 +/- 12.1 mumol.kg-1.min-1). During exercise, Ra increased to 174.7 +/- 32.8 mumol.kg-1.min-1 in sham-injected animals. In the MPA-treated animals, there was a 35% increase during the first 15 min of exercise, followed by a decrease to the resting values. MPA-treated animals had no measurable glucose recycling at rest or during exercise. Exercise decreased blood glucose concentration (35%) and increased blood lactate concentration (160%) in the MPA-treated animals. Exercising sham-injected animals had increased blood glucose (9.8%) but no change in blood lactate concentration. Moderate depletions in liver and skeletal muscle glycogen contents were observed after exercise.(ABSTRACT TRUNCATED AT 250 WORDS)


1978 ◽  
Vol 44 (4) ◽  
pp. 564-570 ◽  
Author(s):  
L. B. Gladden ◽  
H. G. Welch

This study was undertaken to compare the efficiency of aerobic and anaerobic work. Nine subjects worked at approximately 100% VO2 max for 2 min while inspiring gas mixtures with O2 fractions ranging from 0.13 to 0.21. Exercise O2 uptake, recovery O2 uptake, and blood lactate concentration were measured. Steady level O2 uptake was measured in normoxia at submaximal loads of about 30, 50, and 70% of VO2 max. Fast recovery O2 uptake did not change as PIO2 was varied. Exercise O2 uptake and blood lactate concentrations were linearly related to PIO2. The ratio of the slopes of these lines provided an empirical expression of the O2 equivalent of blood lactate. This ratio was constant, suggesting that it is not less efficient to use ATP synthesized anaerobically. Energy input from lactate was calculated using this factor. Efficiency decreased as power output increased even at the submaximal work rates. This may result from either 1) a decrease in muscle efficiency, 2) an increase in metabolism that is not directly related to the external work, or 3) some combination of 1 and 2.


1988 ◽  
Vol 64 (5) ◽  
pp. 1878-1884 ◽  
Author(s):  
J. L. Beard ◽  
J. D. Haas ◽  
D. Tufts ◽  
H. Spielvogel ◽  
E. Vargas ◽  
...  

Thirty-seven young adult male highland residents at 3,600–4,100 m in La Paz, Bolivia, performed short-duration cycle ergometry at 60, 80, and 100% of maximal voluntary O2 consumption (VO2max). Three groups of subjects representing the high-altitude population mean hemoglobin (Hb), the 10th percentile Hb, and below the 1st percentile were examined to test the hypothesis that the relationship of exercise performance to Hb concentration is similar to those relationships established at low altitude. Anemic individuals (n = 8) had 23% lower voluntary VO2max and 28% lower maximal work loads compared with controls (n = 17) or marginally anemic subjects (n = 12) although the relationship of VO2 to work load was similar. Anemic individuals maintained significantly higher arterial O2 partial pressures and Hb saturations during heavy exercise (90 +/- 0.5 vs. 85 +/- 0.6%) in conjunction with a greater heart rate up to maximal effort. A significantly decreased erythrocyte 2,3-diphosphoglycerate (2,3-DPG)-to-Hb molar ratio (0.70 +/- 0.04 vs. 1.12 +/- 0.06), suggestive of a left-shifted dissociation curve in anemics, is in contrast to the expected right-shifted curve. Moderate anemics were similar to controls. Anemic individuals did not differ in arterial lactate concentration from controls at absolute work loads; anemics had significantly lower arterial lactate concentrations at maximal effort than controls with no differences in the work load-to-lactate relationship. In conclusion, O2 transport during exercise at high altitude seems unaffected by the Hb concentrations as low as the 10th percentile of the population mean.(ABSTRACT TRUNCATED AT 250 WORDS)


1996 ◽  
Vol 81 (1) ◽  
pp. 252-259 ◽  
Author(s):  
A. J. Young ◽  
M. N. Sawka ◽  
S. R. Muza ◽  
R. Boushel ◽  
T. Lyons ◽  
...  

This study investigated whether autologous erythrocyte infusion would ameliorate the decrement in maximal O2 uptake (VO2max) experienced by lowlanders when they ascend to high altitude. VO2max was measured in 16 men (treadmill running) at sea level (SL) and on the 1st (HA1) and 9th (HA9) days of high-altitude (4,300 m) residence. After VO2max was measured at SL, subjects were divided into two matched groups (n = 8). Twenty-four hours before ascent to high altitude, the experimental group received a 700-ml infusion of autologous erythrocytes and saline (42% hematocrit), whereas the control group received only saline. The VO2max of erythrocyte-infused [54 +/- 1 (SE) ml.kg-1.min-1] and control subjects (52 +/- 2 ml.kg-1.min-1) did not differ at SL before infusion. The decrement in VO2max on HA1 did not differ between groups, averaging 26% overall, despite higher (P < 0.01) arterial hematocrit, hemoglobin concentration, and arterial O2 content in the erythrocyte-infused subjects. By HA9, there were no longer any differences in hematocrit, hemoglobin concentration, or arterial O2 content between groups. No change in VO2max occurred between HA1 and HA9 for either group. Thus, despite increasing arterial O2-carrying capacity, autologous erythrocyte infusion did not ameliorate the decrement in VO2max at 4,300-m altitude.


1975 ◽  
Vol 39 (1) ◽  
pp. 18-22 ◽  
Author(s):  
J. T. Maher ◽  
L. G. Jones ◽  
L. H. Hartley ◽  
G. H. Williams ◽  
L. I. Rose

Hormonal responses to graded exercise of eight low altitude residents were examined at sea level (SL) and after 1 (acute) and 11 (chronic) days at 4,300 m (HA). Caloric, water, and electrolyte intakes were controlled, as were temperature and humidity. Blood was sampled at rest and during light and moderate upright bicycle exercise (20 min at 40% and 75% of maximal O2 uptake, respectively). Mean VO2 max at HA was 27% lower than at SL. Resting plasma levels of aldosterone (Aldo), renin, and angiotensin II (A II) were significantly lower (P smaller than 0.05) on day 1 at HA compared to SL, but returned to SL values by day 11. Plasma cortisol values at rest were similar at SL and HA and were not significantly altered by light or moderate exercise. Renin, A II, and Aldo rose progressively with increasing workload in each environment. With acute HA, renin and Aldo were lower than at either SL or chronic HA. The chronic HA levels tended to approximate SL findings, implying adaptation. The data suggest that aldosterone is predominantly under the control of the renin-angiotensin system during graded exercise at sea level and that the response of this system is altered on acute high-altitude exposure.


Sign in / Sign up

Export Citation Format

Share Document