Modeling road-cycling performance

1995 ◽  
Vol 78 (4) ◽  
pp. 1596-1611 ◽  
Author(s):  
T. S. Olds ◽  
K. I. Norton ◽  
E. L. Lowe ◽  
S. Olive ◽  
F. Reay ◽  
...  

This paper presents a complete set of equations for a “first principles” mathematical model of road-cycling performance, including corrections for the effect of winds, tire pressure and wheel radius, altitude, relative humidity, rotational kinetic energy, drafting, and changed drag. The relevant physiological, biophysical, and environmental variables were measured in 41 experienced cyclists completing a 26-km road time trial. The correlation between actual and predicted times was 0.89 (P < or = 0.0001), with a mean difference of 0.74 min (1.73% of mean performance time) and a mean absolute difference of 1.65 min (3.87%). Multiple simulations were performed where model inputs were randomly varied using a normal distribution about the measured values with a SD equivalent to the estimated day-to-day variability or technical error of measurement in each of the inputs. This analysis yielded 95% confidence limits for the predicted times. The model suggests that the main physiological factors contributing to road-cycling performance are maximal O2 consumption, fractional utilization of maximal O2 consumption, mechanical efficiency, and projected frontal area. The model is then applied to some practical problems in road cycling: the effect of drafting, the advantage of using smaller front wheels, the effects of added mass, the importance of rotational kinetic energy, the effect of changes in drag due to changes in bicycle configuration, the normalization of performances under different conditions, and the limits of human performance.

2009 ◽  
Vol 4 (1) ◽  
pp. 18-28 ◽  
Author(s):  
Andrew D. Williams ◽  
Isaac Selva Raj ◽  
Kristie L. Stucas ◽  
James W. Fell ◽  
Diana Dickenson ◽  
...  

Objectives:Uncoupled cycling cranks are designed to remove the ability of one leg to assist the other during the cycling action. It has been suggested that training with this type of crank can increase mechanical efficiency. However, whether these improvements can confer performance enhancement in already well-trained cyclists has not been reported.Method:Fourteen well-trained cyclists (13 males, 1 female; 32.4 ± 8.8 y; 74.5 ± 10.3 kg; Vo2max 60.6 ± 5.5 mL·kg−1·min−1; mean ± SD) participated in this study. Participants were randomized to training on a stationary bicycle using either an uncoupled (n = 7) or traditional crank (n = 7) system. Training involved 1-h sessions, 3 days per week for 6 weeks, and at a heart rate equivalent to 70% of peak power output (PPO) substituted into the training schedule in place of other training. Vo2max, lactate threshold, gross efficiency, and cycling performance were measured before and following the training intervention. Pre- and post testing was conducted using traditional cranks.Results:No differences were observed between the groups for changes in Vo2max, lactate threshold, gross efficiency, or average power maintained during a 30-minute time trial.Conclusion:Our results indicate that 6 weeks (18 sessions) of training using an uncoupled crank system does not result in changes in any physiological or performance measures in well-trained cyclists.


2018 ◽  
Vol 13 (3) ◽  
pp. 268-273 ◽  
Author(s):  
Ana B. Peinado ◽  
Nuria Romero-Parra ◽  
Miguel A. Rojo-Tirado ◽  
Rocío Cupeiro ◽  
Javier Butragueño ◽  
...  

Context: While a number of studies have researched road-cycling performance, few have attempted to investigate the physiological response in field conditions. Purpose: To describe the physiological and performance profile of an uphill time trial (TT) frequently used in cycling competitions. Methods: Fourteen elite road cyclists (mean ± SD age 25 ± 6 y, height 174 ± 4.2 cm, body mass 64.4 ± 6.1 kg, fat mass 7.48% ± 2.82%) performed a graded exercise test to exhaustion to determine maximal parameters. They then completed a field-based uphill TT in a 9.2-km first-category mountain pass with a 7.1% slope. Oxygen uptake (VO2), power output, heart rate (HR), lactate concentration, and perceived-exertion variables were measured throughout the field-based test. Results: During the uphill TT, mean power output and velocity were 302 ± 7 W (4.2 ± 0.1 W/kg) and 18.7 ± 1.6 km/h, respectively. Mean VO2 and HR were 61.6 ± 2.0 mL · kg−1 · min−1 and 178 ± 2 beats/min, respectively. Values were significantly affected by the 1st, 2nd, 6th, and final kilometers (P < .05). Lactate concentration and perceived exertion were 10.87 ± 1.12 mmol/L and 19.1 ± 0.1, respectively, at the end of the test, being significantly different from baseline measures. Conclusion: The studied uphill TT is performed at 90% of maximum HR and VO2 and 70% of maximum power output. To the authors’ knowledge, this is the first study assessing cardiorespiratory parameters combined with measures of performance, perceived exertion, and biochemical variables during a field-based uphill TT in elite cyclists.


2016 ◽  
Vol 11 (6) ◽  
pp. 707-714 ◽  
Author(s):  
Benoit Capostagno ◽  
Michael I. Lambert ◽  
Robert P. Lamberts

Finding the optimal balance between high training loads and recovery is a constant challenge for cyclists and their coaches. Monitoring improvements in performance and levels of fatigue is recommended to correctly adjust training to ensure optimal adaptation. However, many performance tests require a maximal or exhaustive effort, which reduces their real-world application. The purpose of this review was to investigate the development and use of submaximal cycling tests that can be used to predict and monitor cycling performance and training status. Twelve studies met the inclusion criteria, and 3 separate submaximal cycling tests were identified from within those 12. Submaximal variables including gross mechanical efficiency, oxygen uptake (VO2), heart rate, lactate, predicted time to exhaustion (pTE), rating of perceived exertion (RPE), power output, and heart-rate recovery (HRR) were the components of the 3 tests. pTE, submaximal power output, RPE, and HRR appear to have the most value for monitoring improvements in performance and indicate a state of fatigue. This literature review shows that several submaximal cycle tests have been developed over the last decade with the aim to predict, monitor, and optimize cycling performance. To be able to conduct a submaximal test on a regular basis, the test needs to be short in duration and as noninvasive as possible. In addition, a test should capture multiple variables and use multivariate analyses to interpret the submaximal outcomes correctly and alter training prescription if needed.


Nutrients ◽  
2016 ◽  
Vol 8 (5) ◽  
pp. 269 ◽  
Author(s):  
Tuğba Kulaksız ◽  
Şükran Koşar ◽  
Suleyman Bulut ◽  
Yasemin Güzel ◽  
Marcus Willems ◽  
...  

2006 ◽  
Vol 16 (4) ◽  
pp. 405-419 ◽  
Author(s):  
Holden S-H. MacRae ◽  
Kari M. Mefferd

We investigated whether 6 wk of antioxidant supplementation (AS) would enhance 30 km time trial (TT) cycling performance. Eleven elite male cyclists completed a randomized, double-blind, cross-over study to test the effects of twice daily AS containing essential vitamins plus quercetin (FRS), and AS minus quercetin (FRS-Q) versus a baseline TT (B). MANOVA analysis showed that time to complete the 30 km TT was improved by 3.1% on FRS compared to B (P ≤ 0.01), and by 2% over the last 5 km (P ≤ 0.05). Absolute and relative (%HRmax) heart rates and percent VO2max were not different between trials, but average and relative power (% peak power) was higher on FRS (P ≤ 0.01). Rates of carbohydrate and fat oxidation were not different between trials. Thus, FRS supplementation significantly improved high-intensity cycling TT performance through enhancement of power output. Further study is needed to determine the potential mechanism(s) of the antioxidant efficacy.


2015 ◽  
Vol 25 (3) ◽  
pp. 285-292 ◽  
Author(s):  
Michael L. Newell ◽  
Angus M. Hunter ◽  
Claire Lawrence ◽  
Kevin D. Tipton ◽  
Stuart D. R. Galloway

In an investigator-blind, randomized cross-over design, male cyclists (mean± SD) age 34.0 (± 10.2) years, body mass 74.6 (±7.9) kg, stature 178.3 (±8.0) cm, peak power output (PPO) 393 (±36) W, and VO2max 62 (±9) ml·kg−1min−1 training for more than 6 hr/wk for more than 3y (n = 20) completed four experimental trials. Each trial consisted of a 2-hr constant load ride at 95% of lactate threshold (185 ± 25W) then a work-matched time trial task (~30min at 70% of PPO). Three commercially available carbohydrate (CHO) beverages, plus a control (water), were administered during the 2-hr ride providing 0, 20, 39, or 64g·hr−1 of CHO at a fluid intake rate of 1L·hr−1. Performance was assessed by time to complete the time trial task, mean power output sustained, and pacing strategy used. Mean task completion time (min:sec ± SD) for 39g·hr−1 (34:19.5 ± 03:07.1, p = .006) and 64g·hr−1 (34:11.3 ± 03:08.5 p = .004) of CHO were significantly faster than control (37:01.9 ± 05:35.0). The mean percentage improvement from control was −6.1% (95% CI: −11.3 to −1.0) and −6.5% (95% CI: −11.7 to −1.4) in the 39 and 64g·hr−1 trials respectively. The 20g·hr−1 (35:17.6 ± 04:16.3) treatment did not reach statistical significance compared with control (p = .126) despite a mean improvement of −3.7% (95% CI −8.8−1.5%). No further differences between CHO trials were reported. No interaction between CHO dose and pacing strategy occurred. 39 and 64g·hr−1 of CHO were similarly effective at improving endurance cycling performance compared with a 0g·hr−1 control in our trained cyclists.


2001 ◽  
Vol 11 (2) ◽  
pp. 209-225 ◽  
Author(s):  
Estelle V. Lambert ◽  
Julia H. Goedecke ◽  
Charl van Zyl ◽  
Kim Murphy ◽  
John A. Hawley ◽  
...  

We examined the effects of a high-fat diet (HFD-CHO) versus a habitual diet, prior to carbohydrate (CHO)-loading on fuel metabolism and cycling time-trial (TT) performance. Five endurance-trained cyclists participated in two 14-day randomized cross-over trials during which subjects consumed either a HFD (>65% MJ from fat) or their habitual diet (CTL) (30 ± 5% MJ from fat) for 10 day, before ingesting a high-CHO diet (CHO-loading, CHO > 70% MJ) for 3 days. Trials consisted of a 150-min cycle at 70% of peak oxygen uptake (V̇O2peak), followed immediately by a 20-km TT. One hour before each trial, cyclists ingested 400 ml of a 3.44% medium-chain triacylglycerol (MCT) solution, and during the trial, ingested 600 ml/hour of a 10% 14C-glucose + 3.44% MCT solution. The dietary treatments did not alter the subjects’ weight, body fat, or lipid profile. There were also no changes in circulating glucose, lactate, free fatty acid (FFA), and β-hydroxybutyrate concentrations during exercise. However, mean serum glycerol concentrations were significantly higher (p < .01) in the HFD-CHO trial. The HFD-CHO diet increased total fat oxidation and reduced total CHO oxidation but did not alter plasma glucose oxidation during exercise. By contrast, the estimated rates of muscle glycogen and lactate oxidation were lower after the HFD-CHO diet. The HFD-CHO treatment was also associated with improved TT times (29.5 ± 2.9 min vs. 30.9 ± 3.4 min for HFD-CHO and CTL-CHO, p < .05). High-fat feeding for 10 days prior to CHO-loading was associated with an increased reliance on fat, a decreased reliance on muscle glycogen, and improved time trial performance after prolonged exercise.


Author(s):  
Antonis Kesisoglou ◽  
Andrea Nicolò ◽  
Louis Passfield

Purpose: To examine the effect of cycling exercise intensity and duration on subsequent performance and to compare the resulting acute performance decrement (APD) with total work done (TWD) and corresponding training-load (TL) metrics. Methods: A total of 14 male cyclists performed a 5-minute time trial (TT) as a baseline and after 4 initial exercise bouts of varying exercise intensity and duration. The initial exercise bouts were performed in a random order and consisted of a 5- and a 20-minute TT and a 20- and a 40-minute submaximal ride. The resulting APD was calculated as the percentage change in 5-minute TT from baseline, and this was compared with the TWD and TL metrics for the corresponding initial exercise bout. Results: Average power output was different for each of the 4 initial exercise bouts (; P < .001), and all bouts resulted in an APD. But APD was only different when comparing maximal with submaximal bouts (; P < .001). The APD contradicted TWD and TL metrics and was not different when comparing 5- and 20-minute maximal TTs or the 20- and 40-minute submaximal bouts. In contrast, TL metrics were different for all training sessions (; P < .001). Conclusion: An APD is found after initial exercise bouts consisting of 5- and 20-minute TTs and after 20- and 40-minute of submaximal exercise that is not consistent with the corresponding values for TWD or TL. This discrepancy highlights important shortcomings when using TWD and TL to compare exercise bouts of different intensity and duration.


Sign in / Sign up

Export Citation Format

Share Document