Cycling Efficiency and Performance Following Short-Term Training Using Uncoupled Cranks

2009 ◽  
Vol 4 (1) ◽  
pp. 18-28 ◽  
Author(s):  
Andrew D. Williams ◽  
Isaac Selva Raj ◽  
Kristie L. Stucas ◽  
James W. Fell ◽  
Diana Dickenson ◽  
...  

Objectives:Uncoupled cycling cranks are designed to remove the ability of one leg to assist the other during the cycling action. It has been suggested that training with this type of crank can increase mechanical efficiency. However, whether these improvements can confer performance enhancement in already well-trained cyclists has not been reported.Method:Fourteen well-trained cyclists (13 males, 1 female; 32.4 ± 8.8 y; 74.5 ± 10.3 kg; Vo2max 60.6 ± 5.5 mL·kg−1·min−1; mean ± SD) participated in this study. Participants were randomized to training on a stationary bicycle using either an uncoupled (n = 7) or traditional crank (n = 7) system. Training involved 1-h sessions, 3 days per week for 6 weeks, and at a heart rate equivalent to 70% of peak power output (PPO) substituted into the training schedule in place of other training. Vo2max, lactate threshold, gross efficiency, and cycling performance were measured before and following the training intervention. Pre- and post testing was conducted using traditional cranks.Results:No differences were observed between the groups for changes in Vo2max, lactate threshold, gross efficiency, or average power maintained during a 30-minute time trial.Conclusion:Our results indicate that 6 weeks (18 sessions) of training using an uncoupled crank system does not result in changes in any physiological or performance measures in well-trained cyclists.

2014 ◽  
Vol 9 (2) ◽  
pp. 309-315 ◽  
Author(s):  
Gregory T. Levin ◽  
Paul B. Laursen ◽  
Chris R. Abbiss

Purpose:To assess the reliability of a 5-min-stage graded exercise test (GXT) and determine the association between physiological attributes and performance over stochastic cycling trials of varying distance.Methods:Twenty-eight well-trained male cyclists performed 2 GXTs and either a 30-km (n = 17) or a 100-km stochastic cycling time trial (n = 9). Stochastic cycling trials included periods of high-intensity efforts for durations of 250 m, 1 km, or 4 km depending on the test being performing.Results:Maximal physiological attributes were found to be extremely reliable (maximal oxygen uptake [VO2max]: coefficient of variation [CV] 3.0%, intraclass correlation coefficient [ICC] .911; peak power output [PPO]: CV 3.0%, ICC .913), but a greater variability was found in ventilatory thresholds and economy. All physiological variables measured during the GXT, except economy at 200 W, were correlated with 30-km cycling performance. Power output during the 250-m and 1-km efforts of the 30-km trial were correlated with VO2max, PPO, and the power output at the second ventilatory threshold (r = .58–.82). PPO was the only physiological attributed measured during the GXT to be correlated with performance during the 100-km cycling trial (r = .64).Conclusions:Many physiological variables from a reliable GXT were associated with performance over shorter (30-km) but not longer (100-km) stochastic cycling trials.


2005 ◽  
Vol 30 (1) ◽  
pp. 46-60 ◽  
Author(s):  
David J. Bentley ◽  
Veronica E. Vleck ◽  
Gregoire P. Millet

The purpose of this study was to determine the relationship between the isocapnic buffer (βisocapnic) and hypocapnic hyperventilation (HHV) phases as well as performance in a short (20-min) and long (90-min) time trial (TT) in trained athletes. In addition, gross (GE, %) and delta (ΔE, %) efficiency were calculated and the relationship between these variables and the average power output (W) in each TT was determined. Thirteen male endurance athletes (Mean ± SD age 31 ± 6 yrs; body mass 75.6 ± 6.3 kg; height 185 ± 6 cm) completed a continuous incremental test to exhaustion for determination of the βisocapnic and HHV phases. A second submaximal test was used to determine GE and ΔE. The average power output (W) was measured in a 20-min and 90-min cycling TT. The βisocapnic phase (W) was significantly correlated to the average power output (W) in the 20-min TT (r = 0.58; p <  0.05), but not in the 90-min TT (r = 0.28). The HHV phase (W) was not significantly correlated to the average power output in the 20-min or 90-min TT. No significant correlation was found for GE or for ΔE and performance in the TT. The data from this study shows that βisocapnic together with HHV is not likely to be a useful indicator of cycle TT performance of 20- to 90-min duration. Furthermore, GE and ΔE determined from a submaximal incremental stepwise test are not related to cycling TT performance of different duration. Key words: incremental, correlation, metabolism, athletes, fatigue


2014 ◽  
Vol 9 (4) ◽  
pp. 610-614 ◽  
Author(s):  
Robert P. Lamberts

In high-performance cycling, it is important to maintain a healthy balance between training load and recovery. Recently a new submaximal cycle test, known as the Lamberts and Lambert Submaximal Cycle Test (LSCT), has been shown to be able to accurately predict cycling performance in 15 well-trained cyclists. The aim of this study was to determine the predictive value of the LSCT in 102 trained to elite cyclists (82 men and 20 women). All cyclists performed an LSCT test followed by a peak-power-output (PPO) test, which included respiratory-gas analysis for the determination of maximal oxygen consumption (VO2max). They then performed the LSCT test followed by a 40-km time trial (TT) 72 h later. Average power output during the 3 stages of the LSCT increased from 31%, 60%, and 79% of PPO, while the ratings of perceived exertion increased from 8 to 13 to 16. Very good relationships were found between actual and LSCT-predicted PPO (r = .98, 95%CI: .97–.98, P < .0001), VO2max (r = .96, 95%CI: .97–.99, P < .0001) and 40-km-TT time (r = .98, 95%CI: .94–.97, P < .0001). No gender differences were found when predicting cycling performance from the LSCT (P = .95). The findings of this study show that the LSCT is able to accurately predict cycling performance in trained to elite male and female cyclists and potentially can be used to prescribe and fine-tune training prescription in cycling.


2012 ◽  
Vol 7 (4) ◽  
pp. 313-321 ◽  
Author(s):  
Ernst A. Hansen ◽  
Bent R. Rønnestad ◽  
Geir Vegge ◽  
Truls Raastad

The authors tested whether heavy strength training, including hip-flexion exercise, would reduce the extent of the phase in the crank revolution where negative or retarding crank torque occurs. Negative torque normally occurs in the upstroke phase when the leg is lifted by flexing the hip. Eighteen well-trained cyclists either performed 12 wk of heavy strength training in addition to their usual endurance training (E+S; n = 10) or merely continued their usual endurance training during the intervention period (E; n = 8). The strength training consisted of 4 lower body exercises (3 × 4–10 repetition maximum) performed twice a week. E+S enhanced cycling performance by 7%, which was more than in E (P = .02). Performance was determined as average power output in a 5-min all-out trial performed subsequent to 185 min of submaximal cycling. The performance enhancement, which has been reported previously, was here shown to be accompanied by improved pedaling efficacy during the all-out cycling. Thus, E+S shortened the phase where negative crank torque occurs by ~16°, corresponding to ~14%, which was more than in E (P = .002). In conclusion, adding heavy strength training to usual endurance training in well-trained cyclists improves pedaling efficacy during 5-min all-out cycling performed after 185 min of cycling.


2015 ◽  
Vol 25 (3) ◽  
pp. 285-292 ◽  
Author(s):  
Michael L. Newell ◽  
Angus M. Hunter ◽  
Claire Lawrence ◽  
Kevin D. Tipton ◽  
Stuart D. R. Galloway

In an investigator-blind, randomized cross-over design, male cyclists (mean± SD) age 34.0 (± 10.2) years, body mass 74.6 (±7.9) kg, stature 178.3 (±8.0) cm, peak power output (PPO) 393 (±36) W, and VO2max 62 (±9) ml·kg−1min−1 training for more than 6 hr/wk for more than 3y (n = 20) completed four experimental trials. Each trial consisted of a 2-hr constant load ride at 95% of lactate threshold (185 ± 25W) then a work-matched time trial task (~30min at 70% of PPO). Three commercially available carbohydrate (CHO) beverages, plus a control (water), were administered during the 2-hr ride providing 0, 20, 39, or 64g·hr−1 of CHO at a fluid intake rate of 1L·hr−1. Performance was assessed by time to complete the time trial task, mean power output sustained, and pacing strategy used. Mean task completion time (min:sec ± SD) for 39g·hr−1 (34:19.5 ± 03:07.1, p = .006) and 64g·hr−1 (34:11.3 ± 03:08.5 p = .004) of CHO were significantly faster than control (37:01.9 ± 05:35.0). The mean percentage improvement from control was −6.1% (95% CI: −11.3 to −1.0) and −6.5% (95% CI: −11.7 to −1.4) in the 39 and 64g·hr−1 trials respectively. The 20g·hr−1 (35:17.6 ± 04:16.3) treatment did not reach statistical significance compared with control (p = .126) despite a mean improvement of −3.7% (95% CI −8.8−1.5%). No further differences between CHO trials were reported. No interaction between CHO dose and pacing strategy occurred. 39 and 64g·hr−1 of CHO were similarly effective at improving endurance cycling performance compared with a 0g·hr−1 control in our trained cyclists.


2016 ◽  
Vol 41 (6) ◽  
pp. 666-673 ◽  
Author(s):  
Anthony G. Whitty ◽  
Aron J. Murphy ◽  
Aaron J. Coutts ◽  
Mark L. Watsford

The aim of this study was to determine the effects of high- and low-cadence interval training on the freely chosen cadence (FCC) and performance in endurance-trained cyclists. Sixteen male endurance-trained cyclists completed a series of submaximal rides at 60% maximal power (Wmax) at cadences of 50, 70, 90, and 110 r·min−1, and their FCC to determine their preferred cadence, gross efficiency (GE), rating of perceived exertion, and crank torque profile. Performance was measured via a 15-min time trial, which was preloaded with a cycle at 60% Wmax. Following the testing, the participants were randomly assigned to a high-cadence (HC) (20% above FCC) or a low-cadence (LC) (20% below FCC) group for 18 interval-based training sessions over 6 weeks. The HC group increased their FCC from 92 to 101 r·min−1 after the intervention (p = 0.01), whereas the LC group remained unchanged (93 r·min−1). GE increased from 22.7% to 23.6% in the HC group at 90 r·min−1 (p = 0.05), from 20.0% to 20.9% at 110 r·min−1 (p = 0.05), and from 22.8% to 23.2% at their FCC. Both groups significantly increased their total distance and average power output following training, with the LC group recording a superior performance measure. There were minimal changes to the crank torque profile in both groups following training. This study demonstrated that the FCC can be altered with HC interval training and that the determinants of the optimal cycling cadence are multifactorial and not completely understood. Furthermore, LC interval training may significantly improve time-trial results of short duration as a result of an increase in strength development or possible neuromuscular adaptations.


Author(s):  
Antonis Kesisoglou ◽  
Andrea Nicolò ◽  
Louis Passfield

Purpose: To examine the effect of cycling exercise intensity and duration on subsequent performance and to compare the resulting acute performance decrement (APD) with total work done (TWD) and corresponding training-load (TL) metrics. Methods: A total of 14 male cyclists performed a 5-minute time trial (TT) as a baseline and after 4 initial exercise bouts of varying exercise intensity and duration. The initial exercise bouts were performed in a random order and consisted of a 5- and a 20-minute TT and a 20- and a 40-minute submaximal ride. The resulting APD was calculated as the percentage change in 5-minute TT from baseline, and this was compared with the TWD and TL metrics for the corresponding initial exercise bout. Results: Average power output was different for each of the 4 initial exercise bouts (; P < .001), and all bouts resulted in an APD. But APD was only different when comparing maximal with submaximal bouts (; P < .001). The APD contradicted TWD and TL metrics and was not different when comparing 5- and 20-minute maximal TTs or the 20- and 40-minute submaximal bouts. In contrast, TL metrics were different for all training sessions (; P < .001). Conclusion: An APD is found after initial exercise bouts consisting of 5- and 20-minute TTs and after 20- and 40-minute of submaximal exercise that is not consistent with the corresponding values for TWD or TL. This discrepancy highlights important shortcomings when using TWD and TL to compare exercise bouts of different intensity and duration.


2000 ◽  
Vol 89 (6) ◽  
pp. 2220-2226 ◽  
Author(s):  
Mark A. Febbraio ◽  
Alison Chiu ◽  
Damien J. Angus ◽  
Melissa J. Arkinstall ◽  
John A. Hawley

We investigated the effect of carbohydrate (CHO) ingestion before and during exercise and in combination on glucose kinetics, metabolism and performance in seven trained men, who cycled for 120 min (SS) at ∼63% of peak power output, followed by a 7 kJ/kg body wt time trial (TT). On four separate occasions, subjects received either a placebo beverage before and during SS (PP); placebo 30 min before and 2 g/kg body wt of CHO in a 6.4% CHO solution throughout SS (PC); 2 g/kg body wt of CHO in a 25.7% CHO beverage 30 min before and placebo throughout SS (CP); or 2 g/kg body wt of CHO in a 25.7% CHO beverage 30 min before and 2 g/kg of CHO in a 6.4% CHO solution throughout SS (CC). Ingestion of CC and CP markedly (>8 mM) increased plasma glucose concentration ([glucose]) compared with PP and PC (5 mM). However, plasma [glucose] fell rapidly at the onset of SS so that after 80 min it was similar (6 mM) between all treatments. After this time, plasma [glucose] declined in both PP and CP ( P < 0.05) but was well maintained in both CC and PC. Ingestion of CC and CP increased rates of glucose appearance (Ra) and disappearance (Rd) compared with PP and PC at the onset of, and early during, SS ( P < 0.05). However, late in SS, both glucose Ra and Rd were higher in CC and PC compared with other trials ( P < 0.05). Although calculated rates of glucose oxidation were different when comparing the four trials ( P < 0.05), total CHO oxidation and total fat oxidation were similar. Despite this, TT was improved in CC and PC compared with PP ( P < 0.05). We conclude that 1) preexercise ingestion of CHO improves performance only when CHO ingestion is maintained throughout exercise, and 2) ingestion of CHO during 120 min of cycling improves subsequent TT performance.


Sign in / Sign up

Export Citation Format

Share Document