Effect of skeletal muscle fiber type on the pressor response evoked by static contraction in rabbits

1995 ◽  
Vol 79 (5) ◽  
pp. 1744-1752 ◽  
Author(s):  
L. B. Wilson ◽  
C. K. Dyke ◽  
D. Parsons ◽  
P. T. Wall ◽  
J. A. Pawelczyk ◽  
...  

The purpose of this study was to determine whether the reflex hemodynamic responses to static contraction of predominately glycolytic muscle are greater than the changes elicited by primarily oxidative muscle. Low-frequency electrical stimulation (continuous 21 days) of the tibial nerve of one hindlimb of adult rabbits converted the metabolic characteristics of the predominately glycolytic gastrocnemius to a muscle that was primarily oxidative. After 21 days of stimulation, the rabbits were decerebrated, and static contraction of the glycolytic muscle (unstimulated gastrocnemius) initially decreased heart rate (HR; -16 +/- 3 beats/min) and mean arterial pressure (MAP; -17 +/- 3 mmHg). Thereafter, MAP increased 13 +/- 3 mmHg above baseline. Static contraction of the oxidative muscle (stimulated gastrocnemius) produced similar decreases in HR and MAP (-12 +/- 4 beats/min and -12 +/- 3 mmHg, respectively). However, the subsequent increase in MAP (8 +/- 3 mmHg; above baseline) was less than that evoked by contraction of the glycolytic muscle. The responses evoked by stretch of each muscle and high-intensity electrical stimulation were the same, indicating that the afferents from the muscle were not destroyed by the chronic-stimulation technique. These results support the hypothesis that metabolic by-products play a role in the pressor response to static contraction of skeletal muscle. In addition, these data confirm that contraction of predominately oxidative muscle can evoke a reflex pressor response, albeit smaller than the change elicited from primarily glycolytic muscle.

2021 ◽  
Vol 11 ◽  
Author(s):  
Esteban R. Quezada ◽  
Alexis Díaz-Vegas ◽  
Enrique Jaimovich ◽  
Mariana Casas

The slow calcium transient triggered by low-frequency electrical stimulation (ES) in adult muscle fibers and regulated by the extracellular ATP/IP3/IP3R pathway has been related to muscle plasticity. A regulation of muscular tropism associated with the MCU has also been described. However, the role of transient cytosolic calcium signals and signaling pathways related to muscle plasticity over the regulation of gene expression of the MCU complex (MCU, MICU1, MICU2, and EMRE) in adult skeletal muscle is completely unknown. In the present work, we show that 270 0.3-ms-long pulses at 20-Hz ES (and not at 90 Hz) transiently decreased the mRNA levels of the MCU complex in mice flexor digitorum brevis isolated muscle fibers. Importantly, when ATP released after 20-Hz ES is hydrolyzed by the enzyme apyrase, the repressor effect of 20 Hz on mRNA levels of the MCU complex is lost. Accordingly, the exposure of muscle fibers to 30 μM exogenous ATP produces the same effect as 20-Hz ES. Moreover, the use of apyrase in resting conditions (without ES) increased mRNA levels of MCU, pointing out the importance of extracellular ATP concentration over MCU mRNA levels. The use of xestospongin B (inhibitor of IP3 receptors) also prevented the decrease of mRNA levels of MCU, MICU1, MICU2, and EMRE mediated by a low-frequency ES. Our results show that the MCU complex can be regulated by electrical stimuli in a frequency-dependent manner. The changes observed in mRNA levels may be related to changes in the mitochondria, associated with the phenotypic transition from a fast- to a slow-type muscle, according to the described effect of this stimulation frequency on muscle phenotype. The decrease in mRNA levels of the MCU complex by exogenous ATP and the increase in MCU levels when basal ATP is reduced with the enzyme apyrase indicate that extracellular ATP may be a regulator of the MCU complex. Moreover, our results suggest that this regulation is part of the axes linking low-frequency stimulation with ATP/IP3/IP3R.


2001 ◽  
Vol 155 (1) ◽  
pp. 27-40 ◽  
Author(s):  
Yewei Liu ◽  
Zoltán Cseresnyés ◽  
William R. Randall ◽  
Martin F. Schneider

TTranscription factor nuclear factor of activated T cells NFATc (NFATc1, NFAT2) may contribute to slow-twitch skeletal muscle fiber type–specific gene expression. Green fluorescence protein (GFP) or FLAG fusion proteins of either wild-type or constitutively active mutant NFATc [NFATc(S→A)] were expressed in cultured adult mouse skeletal muscle fibers from flexor digitorum brevis (predominantly fast-twitch). Unstimulated fibers expressing NFATc(S→A) exhibited a distinct intranuclear pattern of NFATc foci. In unstimulated fibers expressing NFATc–GFP, fluorescence was localized at the sarcomeric z-lines and absent from nuclei. Electrical stimulation using activity patterns typical of slow-twitch muscle, either continuously at 10 Hz or in 5-s trains at 10 Hz every 50 s, caused cyclosporin A–sensitive appearance of fluorescent foci of NFATc–GFP in all nuclei. Fluorescence of nuclear foci increased during the first hour of stimulation and then remained constant during a second hour of stimulation. Kinase inhibitors and ionomycin caused appearance of nuclear foci of NFATc–GFP without electrical stimulation. Nuclear translocation of NFATc–GFP did not occur with either continuous 1 Hz stimulation or with the fast-twitch fiber activity pattern of 0.1-s trains at 50 Hz every 50 s. The stimulation pattern–dependent nuclear translocation of NFATc demonstrated here could thus contribute to fast-twitch to slow-twitch fiber type transformation.


1998 ◽  
Vol 275 (3) ◽  
pp. H789-H796 ◽  
Author(s):  
L. Britt Wilson ◽  
Gregory A. Hand

The physiological effects of substance P (SP) are mediated via activation of neurokinin-1 (NK-1) receptors. The purpose of this study was to test the hypothesis that blockade of NK-1 receptors in the dorsal horn, both at the site of entry for the primary afferent neurons and adjacent spinal segments, attenuates the pressor reflex evoked by static contraction and stretch of skeletal muscle. Cats were anesthetized with α-chloralose and urethan, and a laminectomy was performed. With the exception of the L7 dorsal root, the dorsal and ventral roots from L5 to S2 were sectioned on one side of the spinal cord. Thus the primary afferent fibers mediating the pressor reflex enter the spinal cord via the L7 dorsal root in these experiments. Based on dose-response data, dialysis of the NK-1 receptor antagonist CP-96,345 (5 mM for 2 h) into the L7 dorsal horn ipsilateral to the contracting muscle attenuated the pressor response to static contraction (75 ± 15 vs. 46 ± 7 mmHg; n = 5 cats) but not muscle stretch (60 ± 12 vs. 50 ± 8 mmHg). Administration of the inactive enantiomer of CP-96,345, CP-96,344 (5 mM for 2 h), into the L7 dorsal horn failed to alter the cardiovascular changes elicited by contraction (45 ± 7 vs. 43 ± 6 mmHg) and stretch (31 ± 8 vs. 32 ± 11). Dialysis of 5 mM CP-96,345 into the dorsal horn at the L6 and S1 segments for 2 h decreased the peak pressor response to static contraction (58 ± 9 vs. 31 ± 6 mmHg; n = 7) and muscle stretch (61 ± 6 vs. 44 ± 8 mmHg). These data suggest that the activation of NK-1 receptors, both at the site of entry and in regions outside of the entry site for afferent neurons, is involved in the spinal processing that produces the pressor reflex evoked by static contraction of skeletal muscle.


1999 ◽  
Vol 276 (2) ◽  
pp. R331-R339 ◽  
Author(s):  
H. Gissel ◽  
T. Clausen

In isolated rat extensor digitorum longus (EDL) muscle mounted for isometric contractions, chronic low-frequency electrical stimulation was found to lead to an increased uptake of45Ca (154% above control after 240 min) and a progressive accumulation of Ca2+ (85% above control after 240 min). In soleus, however, this treatment led to a small, but significant, increase in 45Ca uptake (30% above control after 180 min) but no significant accumulation of Ca2+. In muscles mounted for isotonic contractions without any external load, electrical stimulation gave rise to a larger45Ca uptake and accumulation of Ca2+ in both EDL and soleus. These uptakes of Ca2+ coincided with an accumulation of Na+. During isometric or isotonic contractions, stimulation at 40 Hz increased the initial (60 s) rate of 45Ca uptake in soleus muscle 15- and 30-fold, respectively. The stimulation-induced increase in 45Ca uptake was only reduced by 17% by the Ca2+-channel blockers nifedipine and verapamil but was blocked by tetrodotoxin. The initial rate of stimulation-induced 22Na and45Ca uptake was correlated ( r = 0.80; P < 0.003). Stimulation of Na+ channels with veratridine increased 45Ca uptake by 93 and 139% in soleus and EDL, respectively ( P < 0.001), effects that were abolished by tetrodotoxin. The results indicate that in skeletal muscle, excitation induces a considerable influx of Ca2+, mediated by Na+ channels.


2008 ◽  
Vol 295 (1) ◽  
pp. C203-C212 ◽  
Author(s):  
Matthew P. Krause ◽  
Ying Liu ◽  
Vivian Vu ◽  
Lawrence Chan ◽  
Aimin Xu ◽  
...  

Adiponectin (Ad) is linked to various disease states and mediates antidiabetic and anti-inflammatory effects. While it was originally thought that Ad expression was limited to adipocytes, we demonstrate here that Ad is expressed in mouse skeletal muscles and within differentiated L6 myotubes, as assessed by RT-PCR, Western blot, and immunohistochemical analyses. Serial muscle sections stained for fiber type, lipid content, and Ad revealed that muscle fibers with elevated intramyocellular Ad expression were consistently type IIA and IID fibers with detectably higher intramyocellular lipid (IMCL) content. To determine the effect of Ad on muscle phenotype and function, we used an Ad-null [knockout (KO)] mouse model. Body mass increased significantly in 24-wk-old KO mice [+5.5 ± 3% relative to wild-type mice (WT)], with no change in muscle mass observed. IMCL content was significantly increased (+75.1 ± 25%), whereas epididymal fat mass, although elevated, was not different in the KO mice compared with WT (+35.1 ± 23%; P = 0.16). Fiber-type composition was unaltered, although type IIB fiber area was increased in KO mice (+25.5 ± 6%). In situ muscle stimulation revealed lower peak tetanic forces in KO mice relative to WT (−47.5 ± 6%), with no change in low-frequency fatigue rates. These data demonstrate that the absence of Ad expression causes contractile dysfunction and phenotypical changes in skeletal muscle. Furthermore, we demonstrate that Ad is expressed in skeletal muscle and that its intramyocellular localization is associated with elevated IMCL, particularly in type IIA/D fibers.


1979 ◽  
Vol 237 (6) ◽  
pp. H662-H667
Author(s):  
J. E. Kendrick ◽  
G. L. Matson

In dogs anesthetized with morphine-chloralose, strong, low-frequency (2 Hz) electrical stimulation of the aortic nerve (AN) causes pressure in the perfused hindlimbs to rise. This pressor response is followed by a large depressor phase upon cessation of stimulation. Simultaneous stimulation of the ipsilateral carotid sinus nerve (CSN) with intermittent trains of stimuli enhanced the AN pressor response by 113%. Similar stimulation of the contralateral CSN had little effect on the AN pressor response. Constant-frequency stimulation of the ipsilateral CSN also failed to enhance this response. Possible mechanisms of the interaction between these antagonistic reflexes were investigated. The results suggest that the augmentation of the AN pressor response results from a central neuronal interaction between these antagonistic reflexes.


2019 ◽  
Vol 16 (6) ◽  
pp. 822-830
Author(s):  
Hiroyuki Tamaki ◽  
Kengo Yotani ◽  
Futoshi Ogita ◽  
Keishi Hayao ◽  
Hikari Kirimto ◽  
...  

1982 ◽  
Vol 53 (5) ◽  
pp. 1094-1099 ◽  
Author(s):  
J. Moxham ◽  
R. H. Edwards ◽  
M. Aubier ◽  
A. De Troyer ◽  
G. Farkas ◽  
...  

During and following high-load fatiguing voluntary contractions, the force response of skeletal muscle to electrical stimulation is altered so that the frequency-force curve is moved to the right. Fatiguing contractions also result in a shift to the left of the electromyographic (EMG) power spectrum. In the quadriceps muscle and the diaphragm of normal subjects the change in the force response to electrical stimulation has been correlated with the EMG changes. After repeated submaximal contractions in the quadriceps and diaphragm, the forces produced by electrical stimulation at low frequencies were reduced, indicating low-frequency fatigue. This type of fatigue persisted for several hours but did not result in any change in the EMG high-to-low ratio. Low-frequency fatigue is probably an important aspect of the failure of skeletal muscle to generate adequate force, and the EMG high-to-low ratio may not recognize this type of fatigue.


Sign in / Sign up

Export Citation Format

Share Document