Relationship between fatty acid delivery and fatty acid oxidation during strenuous exercise

1995 ◽  
Vol 79 (6) ◽  
pp. 1939-1945 ◽  
Author(s):  
J. A. Romijn ◽  
E. F. Coyle ◽  
L. S. Sidossis ◽  
X. J. Zhang ◽  
R. R. Wolfe

To evaluate the extent to which decreased plasma free fatty acid (FFA) concentration contributes to the relatively low rates of fat oxidation during high-intensity exercise, we studied FFA metabolism in six endurance-trained cyclists during 20–30 min of exercise [85% of maximal O2 uptake (VO2max)]. They were studied on two occasions: once during a control trial when plasma FFA concentration is normally low and again when plasma FFA concentration was maintained between 1 and 2 mM by intravenous infusion of lipid (Intralipid) and heparin. During the 20–30 min of exercise, fat and carbohydrate oxidation were measured by indirect calorimetry, and the rates of appearance (Ra) of plasma FFA and glucose were determined by the constant infusion of [6,6–2H2]glucose and [2H2]palmitate. Lipid-heparin infusion did not influence the Ra or rate of disappearance of glucose. During exercise in the control trial, Ra FFA failed to increase above resting levels (11.0 +/- 1.2 and 12.4 +/- 1.7 mumol.kg-1.min-1 for rest and exercise, respectively) and plasma FFA concentration dropped from a resting value of 0.53 +/- 0.08 to 0.29 +/- 0.02 mM. The restoration of plasma FFA concentration resulted in a 27% increase in total fat oxidation (26.7 +/- 2.6 vs. 34.0 +/- 4.4 mumol.kg-1.min-1, P < 0.05) with a concomitant reduction in carbohydrate oxidation, apparently due to a 15% (P < 0.05) reduction in muscle glycogen utilization. However, the elevation of plasma FFA concentration during exercise at 85% VO2max only partially restored fat oxidation compared with the levels observed during exercise at 65% VO2max. These findings indicate that fat oxidation is normally impaired during exercise at 85% VO2max because of the failure of FFA mobilization to increase above resting levels, but this explains only part of the decline in fat oxidation when exercise intensity is increased from 65 to 85% VO2max.

1999 ◽  
Vol 86 (6) ◽  
pp. 2097-2105 ◽  
Author(s):  
Anne L. Friedlander ◽  
Gretchen A. Casazza ◽  
Michael A. Horning ◽  
Anton Usaj ◽  
George A. Brooks

We examined the effects of exercise intensity and a 10-wk cycle ergometer training program [5 days/wk, 1 h, 75% peak oxygen consumption (V˙o 2 peak)] on plasma free fatty acid (FFA) flux, total fat oxidation, and whole body lipolysis in healthy male subjects ( n= 10; age = 25.6 ± 1.0 yr). Two pretraining trials (45 and 65% ofV˙o 2 peak) and two posttraining trials (same absolute workload, 65% of oldV˙o 2 peak; and same relative workload, 65% of newV˙o 2 peak) were performed by using an infusion of [1-13C]palmitate and [1,1,2,3,3-2H]glycerol. An additional nine subjects (age 25.4 ± 0.8 yr) were treated similarly but were infused with [1,1,2,3,3-2H]glycerol and not [1-13C]palmitate. Subjects were studied postabsorptive for 90 min of rest and 1 h of cycling exercise. After training, subjects increasedV˙o 2 peak by 9.4 ± 1.4%. Pretraining, plasma FFA kinetics were inversely related to exercise intensity with rates of appearance (Ra) and disappearance (Rd) being significantly higher at 45 than at 65%V˙o 2 peak(Ra: 8.14 ± 1.28 vs. 6.64 ± 0.46, Rd: 8.03 ± 1.28 vs. 6.42 ± 0.41 mol ⋅ kg−1 ⋅ min−1) ( P ≤ 0.05). After training, when measured at the same absolute and relative intensities, FFA Ra increased to 8.84 ± 1.1, 8.44 ± 1.1 and Rd to 8.82 ± 1.1, 8.35 ± 1.1 mol ⋅ kg−1 ⋅ min−1, respectively ( P ≤ 0.05). Total fat oxidation determined from respiratory exchange ratio was elevated during exercise compared with rest, but did not differ among the four conditions. Glycerol Ra was elevated during exercise compared with rest but did not demonstrate significant intensity or training effects during exercise. Thus, in young men, plasma FFA flux is increased during exercise after endurance training, but total fat oxidation and whole-body lipolysis are unaffected when measured at the same absolute or relative exercise intensities.


2004 ◽  
Vol 287 (1) ◽  
pp. E120-E127 ◽  
Author(s):  
Matthew J. Watt ◽  
Anna G. Holmes ◽  
Gregory R. Steinberg ◽  
Jose L. Mesa ◽  
Bruce E. Kemp ◽  
...  

Intramuscular triacylglycerols (IMTG) are proposed to be an important metabolic substrate for contracting muscle, although this remains controversial. To test the hypothesis that reduced plasma free fatty acid (FFA) availability would increase IMTG degradation during exercise, seven active men cycled for 180 min at 60% peak pulmonary O2 uptake either without (CON) or with (NA) prior ingestion of nicotinic acid to suppress adipose tissue lipolysis. Skeletal muscle and adipose tissue biopsy samples were obtained before and at 90 and 180 min of exercise. NA ingestion decreased ( P < 0.05) plasma FFA at rest and completely suppressed the exercise-induced increase in plasma FFA (180 min: CON, 1.42 ± 0.07; NA, 0.10 ± 0.01 mM). The decreased plasma FFA during NA was associated with decreased ( P < 0.05) adipose tissue hormone-sensitive lipase (HSL) activity (CON: 13.9 ± 2.5, NA: 9.1 ± 3.0 nmol·min−1·mg protein−1). NA ingestion resulted in decreased whole body fat oxidation and increased carbohydrate oxidation. Despite the decreased whole body fat oxidation, net IMTG degradation was greater in NA compared with CON (net change: CON, 2.3 ± 0.8; NA, 6.3 ± 1.2 mmol/kg dry mass). The increased IMTG degradation did not appear to be due to reduced fatty acid esterification, because glycerol 3-phosphate activity was not different between trials and was unaffected by exercise (rest: 0.21 ± 0.07; 180 min: 0.17 ± 0.04 nmol·min−1·mg protein−1). HSL activity was not increased from resting rates during exercise in either trial despite elevated plasma epinephrine, decreased plasma insulin, and increased ERK1/2 phosphorylation. AMP-activated protein kinase (AMPK)α1 activity was not affected by exercise or NA, whereas AMPKα2 activity was increased ( P < 0.05) from rest during exercise in NA and was greater ( P < 0.05) than in CON at 180 min. These data suggest that plasma FFA availability is an important mediator of net IMTG degradation, and in the absence of plasma FFA, IMTG degradation cannot maintain total fat oxidation. These changes in IMTG degradation appear to disassociate, however, from the activity of the key enzymes responsible for synthesis and degradation of this substrate.


2019 ◽  
Vol 126 (6) ◽  
pp. 1563-1571 ◽  
Author(s):  
Jacob Frandsen ◽  
Stine Dahl Vest ◽  
Christian Ritz ◽  
Steen Larsen ◽  
Flemming Dela ◽  
...  

Plasma free fatty acids (FFA) are a major contributor to whole body fat oxidation during exercise. However, the extent to which manipulating plasma FFA concentrations will influence whole body peak fat oxidation rate (PFO) during exercise remains elusive. In this study we aimed to increase plasma FFA concentrations through a combination of fasting and repeated exercise bouts. We hypothesized that an increase in plasma FFA concentration would increase PFO in a dose-dependent manner. Ten healthy young (31 ± 6 yr) (mean ± SD) well-trained (maximal oxygen uptake 65.9 ± 6.1 ml·min−1·kg−1) men performed four graded exercise tests (GXTs) on 1 day. The GXTs were interspersed by 4 h of bed rest. This was conducted either in a fasted state or with the consumption of a standardized carbohydrate-rich meal 3.5 h before each GXT. Fasting and previous GXTs resulted in a gradual increase in PFO from 0.63 ± 0.18 g/min after an overnight fast (10 h) to 0.93 ± 0.17 g/min after ∼22 h of fasting and three previous GXTs. This increase in PFO coincided with an increase in plasma FFA concentrations ( r2 = 0.73, P < 0.0001). Ingestion of a carbohydrate-rich meal 3.5 h before each GXT resulted in unaltered PFO. This was also reflected in unchanged plasma FFA, glucose, and insulin concentrations. In this study we show that plasma FFA availability is closely tied to whole body PFO and that the length of fasting combined with previous exercise are robust stimuli toward increasing plasma FFA concentration, highlighting the importance for preexercise standardization when conducting GXTs measuring substrate oxidation. NEW & NOTEWORTHY We show that peak fat oxidation is increased in close relationship with plasma free fatty acid availability after combined fasting and repeated incremental exercise tests in healthy highly trained men. Therefore it may be argued that whole body fat oxidation rate measured in most cases after an overnight fast indeed does not represent whole body maximal fat oxidation rate but a whole body peak fat oxidation rate within the context of the preexercise standardization obtained in the study design.


1988 ◽  
Vol 254 (6) ◽  
pp. E694-E699 ◽  
Author(s):  
U. Keller ◽  
P. P. Gerber ◽  
W. Stauffacher

To investigate whether elevated plasma insulin or glucagon concentrations are capable of modifying hepatic ketogenesis independently of plasma free fatty acid (FFA) concentrations, ketone body production was determined by [3–14C]acetoacetate infusions in overnight-fasted normal subjects during exogenous supply of FFA (Intralipid and heparin infusion). When plasma FFA concentrations were elevated from 0.73 +/- 0.07 to 1.53 +/- 0.16 mmol/l during low insulin concentrations (approximately equal to 13 microU/ml) in group A (n = 7), total ketone body production increased from 3.6 +/- 0.6 to 8.2 +/- 1.0 mumol.kg-1.min-1 (P less than 0.001). When plasma FFA were similarly elevated during raised plasma insulin concentrations (approximately equal to 110 microU/ml) in group B (n = 5), total ketone body production was only 3.8 +/- 0.8 mumol.kg-1.min-1 (P less than 0.01 vs. group A). Low plasma FFA and low insulin concentrations resulted in total ketone body production of 0.70 +/- 0.18 mumol.kg-1.min-1 in group C (n = 7; P less than 0.01 vs. groups A and B). Elevation of plasma glucagon during Intralipid infusion in group D (n = 7) failed to affect ketogenesis, but the beta-hydroxybutyrate-to-acetoacetate concentration ratio decreased significantly (P less than 0.01). The data indicate that elevation of plasma insulin to high physiological concentrations restrains FFA-induced ketogenesis.


1993 ◽  
Vol 265 (5) ◽  
pp. E708-E714 ◽  
Author(s):  
W. H. Martin ◽  
G. P. Dalsky ◽  
B. F. Hurley ◽  
D. E. Matthews ◽  
D. M. Bier ◽  
...  

Plasma free fatty acid (FFA) levels tend to be lower and the plasma lipolytic hormone response to prolonged exercise of the same intensity is blunted after endurance exercise training. To determine whether training elicits a corresponding decrease in plasma FFA turnover and metabolism during prolonged exercise, we measured plasma [1-13C]palmitate kinetics and oxidation and respiratory gas exchange in 13 subjects during the latter portion of a 90- to 120-min bout of cycle ergometer work performed before and after 12 wk of alternate-day cycling and running. Training increased total fat oxidation during prolonged exercise by 41% (P < 0.005). However, for the final 30-60 min of the cycle ergometer protocol, the rate of 13CO2 production from [1-13C]palmitate oxidation was 27% lower (P < 0.05), the rate of palmitate turnover was 33% less (P < 0.05), and plasma FFA and glycerol concentrations were 32 and 20% lower (P < 0.05), respectively, than in the untrained state. Thus endurance exercise training results in decreased plasma FFA turnover and oxidation during a 90- to 120-min bout of submaximal exercise because of a slower rate of FFA release from adipose tissue.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jacob Frandsen ◽  
Axel Illeris Poggi ◽  
Christian Ritz ◽  
Steen Larsen ◽  
Flemming Dela ◽  
...  

Introduction: In men, whole body peak fat oxidation (PFO) determined by a graded exercise test is closely tied to plasma free fatty acid (FFA) availability. Men and women exhibit divergent metabolic responses to fasting and exercise, and it remains unknown how the combined fasting and exercise affect substrate utilization in women. We aimed to investigate this, hypothesizing that increased plasma FFA concentrations in women caused by fasting and repeated exercise will increase PFO during exercise. Then, that PFO would be higher in women compared with men (data from a previous study).Methods: On two separate days, 11 young endurance-trained women were investigated, either after an overnight fast (Fast) or 3.5 h after a standardized meal (Fed). On each day, a validated graded exercise protocol (GXT), used to establish PFO by indirect calorimetry, was performed four times separated by 3.5 h of bed rest both in the fasted (Fast) or fed (Fed) state.Results: Peak fat oxidation increased in the fasted state from 11 ± 3 (after an overnight fast, Fast 1) to 16 ± 3 (mean ± SD) mg/min/kg lean body mass (LBM) (after ~22 h fast, Fast 4), and this was highly associated with plasma FFA concentrations, which increased from 404 ± 203 (Fast 1) to 865 ± 210 μmol/L (Fast 4). No increase in PFO was found during the fed condition with repeated exercise. Compared with trained men from a former identical study, we found no sex differences in relative PFO (mg/min/kg LBM) between men and women, in spite of significant differences in plasma FFA concentrations during exercise after fasting.Conclusion: Peak fat oxidation increased with fasting and repeated exercise in trained women, but the relative PFO was similar in young trained men and women, despite major differences in plasma lipid concentrations during graded exercise.


1963 ◽  
Vol 205 (4) ◽  
pp. 645-650 ◽  
Author(s):  
B. Issekutz ◽  
H. I. Miller ◽  
K. Rodahl

Normal and pancreatectomized dogs with indwelling arterial and venous catheters were exercised on the treadmill for 35 min. Palmitate-1-C14 was infused intravenously for 3 hr during the experiment, or administered orally 15 hr before the experiment. The plasma free fatty acid (FFA) level was decreased in normal dogs but increased in the pancreatectomized animals during exercise. This was due to corresponding changes in the rate of FFA release. The rate of uptake of plasma FFA followed the rate of release with some delay, so that at the end of exercise the uptake was tenfold higher in the pancreatectomized dogs than in the controls. In spite of this striking difference, the C14O2 output was increased during exercise four- to fivefold in both groups in the infusion experiments. When the radiopalmitate was administered orally, however, the specific activity of the exhaled C14O2 rapidly decreased in the exercising pancreatectomized dogs but remained rather constant in the controls. It is suggested that during heavy exercise the muscles of the normal dog oxidize their endogenous fat pools, whereas the pancreatectomized animal relies for fat oxidation on the plasma FFA, the concentration of which is considerably increased by norepinephrine in the absence of insulin.


1997 ◽  
Vol 273 (2) ◽  
pp. E268-E275 ◽  
Author(s):  
E. F. Coyle ◽  
A. E. Jeukendrup ◽  
A. J. Wagenmakers ◽  
W. H. Saris

We determined whether increased glycolytic flux from hyperglycemia and hyperinsulinemia directly reduces fatty acid oxidation during exercise. Fatty acid oxidation rates were measured during constant-rate intravenous infusion of trace amounts of a long-chain fatty acid ([1-13C]palmitate; Pal) vs. a medium-chain fatty acid ([1-13C]octanoate; Oct). Six endurance-trained men cycled for 40 min at 50% of maximal O2 uptake 1) after an overnight fast (“fasting”) and 2) after ingestion of 1.4 g/kg of glucose at 60 min and again 10 min before exercise (Glc). Glc caused hyperinsulinemia, a preexercise blood glucose of 6 mM, and a 34% reduction in total fat oxidation during exercise due to an approximately equal reduction in oxidation of plasma-free fatty acids (FFA) and intramuscular triglycerides (all P < 0.05). Oxidation of Pal was significantly reduced during Glc compared with fast (i.e., 70.0 +/- 4.1 vs. 86.0 +/- 1.9% of tracer infusion rate; P < 0.05). However, Glc had no effect on Oct oxidation, which is apparently not limited by mitochondrial transport. Furthermore, Glc reduced plasma FFA appearance 36% (P < 0.05), indicating a coordination of effects on adipose tissue and muscle. In summary, substrate oxidation during exercise can be regulated by increased glycolytic flux that is accompanied by a direct inhibition of long-chain fatty acid oxidation. These observations indicate that carbohydrate availability can directly regulate fat oxidation during exercise.


2001 ◽  
Vol 280 (3) ◽  
pp. E391-E398 ◽  
Author(s):  
Edward F. Coyle ◽  
Asker E. Jeukendrup ◽  
Matthew C. Oseto ◽  
Bradley J. Hodgkinson ◽  
Theodore W. Zderic

We determined whether a low-fat diet reduces intramuscular triglyceride (IMTG) concentration, whole body lipolyis, total fat oxidation, and calculated nonplasma fatty acid (FA) oxidation during exercise. Seven endurance-trained cyclists were studied over a 3-wk period during which time they exercised 2 h/day at 70% of maximum O2 uptakeV˙o 2 max and consumed ∼4,400 kcal/day. During the 1st wk, their fat intake provided 32% of energy. During the 2nd and 3rd wk, they were randomly assigned to eat 2 or 22% of energy from fat (2%FAT or 22%FAT). Compared with 22%FAT, 2%FAT lowered IMTG concentration and raised muscle glycogen concentration at rest ( P < 0.05). Metabolism was studied during 1 h of exercise at 67% V˙o 2 max performed in the fasted state. 2%FAT resulted in a 27% reduction ( P < 0.05) in total fat oxidation vs. 22%FAT without altering the stable isotopically determined rates of plasma free fatty acid or glucose disappearance. Therefore, 2%FAT reduced calculated nonplasma FA oxidation by 40% in association with a 19% reduction in whole body lipolysis while increasing calculated minimal muscle glycogen oxidation compared with 22%FAT (all P < 0.05). In summary, an extremely low fat (2% of energy) and high-carbohydrate diet lowers whole body lipolysis, total fat oxidation, and nonplasma FA oxidation during exercise in the fasted state in association with a reduced concentration of intramuscular triglyceride.


1971 ◽  
Vol 49 (5) ◽  
pp. 394-398 ◽  
Author(s):  
W. D. Wagner ◽  
R. A. Peterson ◽  
R. J. Cenedella

Plasma free fatty acid (FFA) levels and the effects of prostaglandin E1 (PGE1) were studied in cold-acclimated and cold-exposed chickens and compared to controls. Chickens cold-acclimated at 4–7 or 8–11 °C for 4 weeks had significantly elevated plasma FFA when compared to the controls at 19–21 °C. Although PGE1 had no effect on the basal level of FFA of controls, a significantly lower plasma FFA was seen after injection of either 10 or 30 μg PGE1/kg in cold-acclimated chickens. Chickens cold-exposed to 2–3 °C for 4 h demonstrated significant elevations of plasma FFA when compared to controls. Only 30 μg PGE1/kg significantly depressed the plasma FFA in the cold-exposed birds. No inhibition of basal FFA release was seen in control animals. From these experiments, it is concluded that chickens mobilize FFA extensively under cold-exposure and that this stimulated lipolysis is inhibited by PGE1.


Sign in / Sign up

Export Citation Format

Share Document