scholarly journals Functional, cellular, and biochemical adaptations to elastase-induced emphysema in hamster medial scalene

2000 ◽  
Vol 88 (4) ◽  
pp. 1327-1337 ◽  
Author(s):  
Mario Fournier ◽  
Michael I. Lewis

The scalene has been reported to be an accessory inspiratory muscle in the hamster. We hypothesize that with the chronic loads and/or dynamic hyperinflation associated with emphysema (Emp), the scalene will be actively recruited, resulting in functional, cellular, and biochemical adaptations. Emp was induced in adult hamsters. Inspiratory electromyogram (EMG) activity was recorded from the medial scalene and costal diaphragm. Isometric contractile and fatigue properties were evaluated in vitro. Muscle fibers were classified histochemically and immunohistochemically. Individual fiber cross-sectional areas (CSA) and succinate dehydrogenase (SDH) activities were determined quantitatively. Myosin heavy chain (MHC) isoforms were identified by SDS-PAGE, and their proportions were determined by scanning densitometry. All Emp animals exhibited spontaneous scalene inspiratory EMG activity during quiet breathing, whereas the scalene muscles of controls (Ctl) were silent. There were no differences in contractile and fatigue properties of the scalene between Ctl and Emp. In Emp, the relative amount of MHC2Awas 15% higher whereas that of MHC2X was 14% lower compared with Ctl. Similarly, the proportion of type IIa fibers increased significantly in Emp animals with a concomitant decrease in IIx fibers. CSA of type IIx fibers were significantly smaller in Emp compared with Ctl. SDH activities of all fiber types were significantly increased by 53 to 63% in Emp. We conclude that with Emp the actively recruited scalene exhibits primary-like inspiratory activity in the hamster. Adaptations of the scalene with Emp likely relate both to increased loads and to factors intrinsic to muscle architecture and chest mechanics.

1999 ◽  
Vol 86 (3) ◽  
pp. 985-992 ◽  
Author(s):  
Michael I. Lewis ◽  
Mario Fournier ◽  
Amelia Y. Yeh ◽  
Paul E. Micevych ◽  
Gary C. Sieck

The aim of this study was to evaluate the potential mechanisms underlying the improved contractility of the diaphragm (Dia) in adult intact male hamsters after nandrolone (Nan) administration, given subcutaneously over 4 wk via a controlled-release capsule (initial dose: 4.5 mg ⋅ kg−1 ⋅ day−1; with weight gain, final dose: 2.7 mg ⋅ kg−1 ⋅ day−1). Control (Ctl) animals received blank capsules. Isometric contractile properties of the Dia were determined in vitro after 4 wk. The maximum velocity of unloaded shortening ( V o) was determined in vitro by means of the slack test. Dia fibers were classified histochemically on the basis of myofibrillar ATPase staining and fiber cross-sectional area (CSA), and the relative interstitial space was quantitated. Ca2+-activated myosin ATPase activity was determined by quantitative histochemistry in individual diaphragm fibers. Myosin heavy chain (MHC) isoforms were identified electrophoretically, and their proportions were determined by using scanning densitometry. Peak twitch and tetanic forces, as well as V o, were significantly greater in Nan animals compared with Ctl. The proportion of type IIa Dia fibers was significantly increased in Nan animals. Nan increased the CSA of all fiber types (26–47%), whereas the relative interstitial space decreased. The relative contribution of fiber types to total costal Dia area was preserved between the groups. Proportions of MHC isoforms were similar between the groups. There was a tendency for increased expression of MHC2B with Nan. Ca2+-activated myosin ATPase activity was increased 35–39% in all fiber types in Nan animals. We conclude that, after Nan administration, the increase in Dia specific force results from the relatively greater Dia CSA occupied by hypertrophied muscle fibers, whereas the increased ATPase activity promotes a higher rate of cross-bridge turnover and thus increased V o. We speculate that Nan in supraphysiological doses have the potential to offset or ameliorate conditions associated with enhanced proteolysis and disordered protein turnover.


1984 ◽  
Vol 57 (3) ◽  
pp. 899-906 ◽  
Author(s):  
A. De Troyer ◽  
M. Estenne

The pattern of activation of the scalenes and the parasternal intercostal muscles was studied in relation to the pattern of rib cage and abdominal motion during various respiratory maneuvers in the tidal volume range in five normal humans. Electromyograms (EMG) of the scalenes and parasternal intercostals were recorded with bipolar needle electrodes, and changes in abdominal and rib cage displacement were measured using linearized magnetometers. The scalenes and parasternal intercostals were always active during quiet breathing, and their pattern of activation was identical; in both muscles the EMG activity usually started together with the beginning of inspiration, increased in intensity as inspiration proceeded, and persisted into the early part of expiration. In addition, like the parasternal activity the scalene inspiratory activity persisted until the tidal volume was trivial, increased during tidal inspirations performed with the rib cage alone, and was nearly abolished during diaphragmatic isovolume maneuvers. However, attempts to perform tidal inspiration with the diaphragm alone, while causing an increase in parasternal EMG activity, were associated with a marked reduction or a suppression of scalene EMG activity and a reduced substantially distorted rib cage expansion. In particular, the upper rib cage was then moving paradoxically.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 259 (3) ◽  
pp. C507-C514 ◽  
Author(s):  
B. Jiang ◽  
R. R. Roy ◽  
V. R. Edgerton

The metabolic plasticity of single fibers in adult cat medial gastrocnemius (MG) 6 mo after complete spinal cord transection (Sp) at T12-T13 was studied. Some Sp cats were trained to weight support (Sp-WS) 30 min/day beginning 1 mo posttransection. Cross-sectional area, succinate dehydrogenase (SDH), alpha-glycerophosphate dehydrogenase (GPD), and myofibrillar adenosinetriphosphatase (ATPase) activities were determined in fibers identified in frozen serial sections. Fibers were categorized as light or dark based on myosin ATPase staining, alkaline preincubation. The percentage of dark ATPase fibers was higher in Sp and Sp-WS (approximately 85%) than in control (approximately 60%). All dark ATPase fibers reacted positively to a fast myosin heavy chain monoclonal antibody. In both spinal groups, a higher percentage of dark ATPase fibers reacted to both fast and slow myosin heavy chain antibodies than in controls. Neither Sp nor Sp-WS cats showed fiber atrophy. Compared with control, SDH activity was decreased in both fiber types of Sp cats. Daily weight-support training ameliorated this adaptation. There were no differences among the three groups in mean GPD and ATPase activities for either fiber type. There was a slight tendency, however, for spinal cats to have higher GPD and ATPase activities (independent of type) than control, probably reflecting the larger proportion of dark ATPase fibers in these cats. These observations indicate that 6 mo after spinalization in adult cats, some of the fibers of a fast muscle became "faster" and developed oxidative and glycolytic enzyme profiles that normally are exhibited in fast fatigable motor units.(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 60 (4) ◽  
pp. 1393-1400 ◽  
Author(s):  
G. C. Gorniak

Studies on limb muscles of mammals indicate that the pattern of electromyographic (EMG) activity reflects the histochemical profile of the muscle. This relationship suggests that EMG activity may permit a prediction of certain morphological characteristics of the muscle being studied. In this study numerical descriptors of EMG activity of the masticatory muscles of cats are correlated with the distribution of fiber types, as well as with fiber and fascicle areas, to test the extent to which EMG can be used to predict regional morphology. The results show that the level of EMG activity and its duration have a significant positive correlation with the percentage of slow- and fast-twitch fatigue-resistant fibers and a significant negative correlation with the percentage of fast-twitch fatigable fibers and the ratio of fast-twitch fatigable to fast-twitch fatigue-resistant, plus slow fibers. No correlation was found between activity and fiber cross-sectional area; the descriptors showing significant correlation vary with the hardness of the food. Thus the level of EMG activity and its duration seemingly do provide an indicator of the relative difference in fiber distribution among muscles in a species.


1990 ◽  
Vol 68 (5) ◽  
pp. 1938-1944 ◽  
Author(s):  
M. I. Lewis ◽  
G. C. Sieck

The influence of 90 h of acute nutritional deprivation (ND) on the cross-sectional areas of muscle fibers and the contractile and fatigue properties of the adult rat diaphragm were determined. Isometric contractile properties and fatigue resistance of the diaphragm were measured by means of an in vitro nerve-muscle strip preparation. Contractions were evoked by using phrenic nerve stimulation (left hemidiaphragm) or direct muscle stimulation (right hemidiaphragm) in the presence of curare. Acute ND resulted in a 20% reduction in body weight. No significant decrements in diaphragm or soleus weights were noted in the ND animals compared with controls (CTL), whereas the weight of the medial gastrocnemius was reduced by 20% in the ND animals. Peak twitch and tetanic tensions (normalized for the weight of the diaphragm strip) were not reduced in ND compared with CTL animals after either nerve or muscle stimulation. The fatigue index of the diaphragm was significantly reduced in ND animals only after nerve stimulation. After the fatigue test, there was rapid recovery of the additional fatigue noted with nerve stimulation. The proportions of type I and II muscle fibers of the diaphragm were similar in the CTL and ND animals. No differences in diaphragm cross-sectional areas were noted for either type I or II muscle fibers in the CTL and ND animals. It is concluded that acute ND has no effect on diaphragm contractility or morphometry and only an inconsequential influence on diaphragm fatigue.


1992 ◽  
Vol 72 (3) ◽  
pp. 934-943 ◽  
Author(s):  
M. I. Lewis ◽  
W. Z. Zhan ◽  
G. C. Sieck

In adult male hamsters the influence of emphysema (EMP) on the in vitro contractile and fatigue properties and the histochemical, morphometric, and metabolic properties of muscle fibers in the costal diaphragm was determined 6 mo after the administration of either elastase or saline (controls, CTL). Isometric contractile properties were determined in vitro using supramaximal direct muscle stimulation. Optimal fiber length for force generation was significantly shorter in the EMP than in the CTL diaphragm. Maximum specific force (i.e., force per unit area) was 25% lower than CTL. Fatigue resistance was significantly improved in the EMP diaphragm compared with CTL. Diaphragm muscle fibers were classified as type I or II on the basis of histochemical staining for myofibrillar adenosinetriphosphatase after alkaline preincubation. The proportions of type I and II fibers were similar between the two groups. Cross-sectional areas of type II fibers were 30% larger in EMP than in CTL diaphragms. Succinate dehydrogenase activities of both type I and II fibers were higher in EMP than in CTL diaphragms. The number of capillaries surrounding both type I and II fibers increased with EMP, but in proportion to the hypertrophy of these fibers. Thus, capillary density (number of capillaries per fiber cross-sectional area) remained unchanged. We postulate that these contractile, morphometric, and metabolic adaptations reflect an increased activation of the diaphragm in response to the loads imposed by EMP.


1998 ◽  
Vol 84 (6) ◽  
pp. 1967-1975 ◽  
Author(s):  
Manmohan S. Biring ◽  
Mario Fournier ◽  
David J. Ross ◽  
Michael I. Lewis

The aim of this study was to evaluate the cellular response of the diaphragm, extensor digitorum longus (EDL), and soleus (Sol) muscles to clinically relevant doses of cyclosporine administered to male rats over 4 wk. Control rats were provided with vehicle only. Muscle fiber types, cross-sectional areas, indexes of capillarity, and succinate dehydrogenase (SDH) activity were determined by quantitative histochemistry. Myosin heavy chain isoforms were identified by SDS-PAGE, and their proportions were measured by scanning densitometry. Serum cyclosporine level, 20–24 h after the last dose of cyclosporine, was 145 ± 81 ng/ml. Final body weight and muscle mass were similar between the cyclosporine and control groups. In the diaphragm, EDL, and Sol, no differences were observed between the groups with regard to fiber type proportions, fiber cross-sectional areas, and proportions of myosin heavy chain isoforms. In the EDL, reductions, both in SDH activity in type I, IIx, and IIb fibers (−26 to −37%) and in indexes of capillarity (−18 to −37%), were noted. In the Sol, SDH activity and capillarity were similar between the groups. In the diaphragm of cyclosporine-treated rats, there was significant reduction in the number of capillaries around individual fibers (−5%), whereas levels of SDH activity tended to be lower. This suggests that activation history may in part determine muscle-specific responses to cyclosporine. We speculate that reduced oxidative activity and capillarity of some limb muscles contribute to reduced exercise capacity and the “deconditioned state” observed in patients receiving cyclosporine after successful solid-organ transplantation.


Blood ◽  
1986 ◽  
Vol 68 (2) ◽  
pp. 455-462 ◽  
Author(s):  
M Berrettini ◽  
B Lammle ◽  
T White ◽  
MJ Heeb ◽  
HP Schwarz ◽  
...  

Abstract Purified human high-mol-wt kininogen (HMWK), the cofactor of the contact phase of blood coagulation, migrated as a single band (approximately 110,000 mol wt) in a continuous buffer sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), but appeared as two separated bands (approximately 120,000 and 105,000 mol wt) when analyzed in a discontinuous buffer SDS-PAGE system. After elution from SDS polyacrylamide gels, each of the two bands showed coagulant activity. Six murine monoclonal antibodies (Mabs) against HMWK were produced and purified. In immunoblotting studies, three Mabs bound to the isolated alkylated heavy chain and one to the alkylated light chain of HMWK, whereas the remaining two bound only to the single-chain or unreduced two-chain molecule. None of the Mabs inhibited the clotting activity of HMWK or its binding to kaolin. Two of the Mabs, one directed against the light chain and one against the heavy chain, were used as specific probes to study HMWK in plasma samples using an immunoblotting technique. The anti-light chain Mab identified two distinct bands (approximately 120,000 and approximately 105,000 mol wt) in normal human plasma, but not in plasma from patients with hereditary HMWK deficiency. The anti-heavy chain Mab detected two additional bands (approximately 60,000 and approximately 54,000 mol wt) corresponding to low-mol-wt kininogen (LMWK) in normal plasma. A sensitive and specific quantitative immunoblotting assay of HMWK antigen in plasma was developed. Moreover, the immunoblotting technique with the anti-light chain Mab was used to detect the cleavage of HMWK in plasma samples after in vitro or in vivo activation of the contact system. The anti- light chain Mab demonstrated in vivo activation and cleavage of HMWK during an angioedema attack in a patient with hereditary angioedema and C1-inhibitor deficiency.


1992 ◽  
Vol 72 (4) ◽  
pp. 1445-1453 ◽  
Author(s):  
W. Z. Zhan ◽  
G. C. Sieck

The effects of 2 wk of inactivity on in vitro contractile properties of diaphragm and medial gastrocnemius (MG) muscles were examined in adult hamsters. In addition, inactivity effects on fiber-type proportions and cross-sectional areas were studied. Inactivity of the right hemidiaphragm or MG muscle was induced by either tetrodotoxin (TTX) blockade of nerve impulses or denervation (DNV). Inactivity effects on diaphragm or MG were compared with corresponding sham (saline-treated or untreated control) muscles. After both TTX- and DNV-induced inactivity, isometric twitch contraction and half-relaxation times were prolonged, maximum tetanic force decreased, and fatigue resistance improved. Proportions of type I and II fibers in both diaphragm and MG were unaffected by TTX- and DNV-induced inactivity. However, in both muscles, type I fibers hypertrophied, whereas type II fibers atrophied. In diaphragm, contractile and morphometric adaptations after DNV were generally more pronounced than those induced by TTX. In addition, compared with corresponding untreated or saline-treated control groups, inactivity effects (both TTX and DNV) on MG were generally greater than those induced in diaphragm, with the exception of hypertrophy of type I fibers. We conclude that inactivity exerts differential effects on type I and II fibers in both diaphragm and MG. Yet, these morphometric adaptations cannot completely account for the adaptations in muscle contractile and fatigue properties after inactivity.


1982 ◽  
Vol 52 (3) ◽  
pp. 524-529 ◽  
Author(s):  
A. De Troyer ◽  
M. G. Sampson

We have tested the possibility that the electromyographic (EMG) activity present in the parasternal intercostal muscles during quiet inspiration was reflexive, rather than agonistic, in nature. Using concentric needle electrodes we measured parasternal EMG activity in four normal subjects during various inspiratory maneuvers. We found that 1) phasic inspiratory activity was invariably present in the parasternal intercostals during quiet breathing, 2) the parasternal EMG activity was generally increased during attempts to perform the tidal breathing maneuver with the diaphragm alone, 3) parasternal EMG activity was markedly decreased or suppressed in the presence of rib cage distortion during diaphragmatic isovolume maneuvers, and 4) that EMG activity could not be voluntarily suppressed during breathing unless the inspired volume was trivial. We conclude that the parasternal EMG activity detected during quiet inspiration in the normal subjects depends on a central involuntary mechanism and is not related to activation of intercostal mechanoreceptors.


Sign in / Sign up

Export Citation Format

Share Document